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Ilybnixyemucsa 3a pivieHHAM 84eHoi paou [{HinponemposcbKoeo HaAYioHANbHO20
yuisepcumemy imeni Onecs I'onuapa 32iono 3 nianom euoams Ha 2013 p.

[IpencraBneni pe3yapTaTd OOCHIIKEHb 3 MUTaHb TEOPETHYHOI (i3UKH, (i3UKU
TBEPJOTO TiJia Ta Paxiodi3uKy.

OOTOBOPIOIOTHECS TUTAHHS OIIHKM MOXJIMBUX CUTHaNIB abeineBoro Z' 6030Ha,
3actocyBanHs SU(2) rpaTkoBoi KamiOpyBadbHOI Teopii MOiA, BAOCKOHAJIEHHS KOCMO-
JOTIYHUX MOJeJIel, OMHCYy MOBHICTIO 10HI30BaHOI TUTa3MH Ta €IEKTPOMATHITHOTO OIS
B CEPEIOBHII 3 HEPYXOMHX JBOPIBHEBUX BUIIPOMIHIOBAIB.

PosrmsimatoTbess poOieMu OTpUMaHHS Ta AOCIHIPKEHHS BIACTHBOCTEH KOMITO3HT-
HUX MaTepiajiB Ha OCHOBI CHHTETHYHUX ONAJIiB, JBOOKCUAY BaHAJil0, 0araTOKOMIIOHEHT-
HUX BHCOKOSHTPOITIMHUX CITIABIB, MarHITOTBEPINX MaTepiajiB y METacTaOlILHOMY CTaHi.
TakoX IOCIIIKYIOTBCSI CTPYKTYpa Ta BJIACTHBOCTI TBEPJMX PO3YMHIB Ha OCHOBI MOHO-
Oopuny 3aiiza, MpouecH KpUcTali3amii B MIKpOAPOTaX 1 mepe3apsaKy B MOJIKPUCTATIYHUX
HammiBIpoBiAHUKAX. [IpencTaBneHo pe3ynbTaTd MOJIENIOBaHHS TMPOIECiB KpHCTaizarii
METaJliB Ta PO3PAXyHKY €HEPreTUYHHX 1 TEOMETPHYHNX XapaKTEPUCTUK KPEMHIEBUX HAHO-
KJIaCTEepiB.

JloCHimKyIOThCSL TPOLIECH Y  XBHJICBOAHO-IIENEKTPHYHIA CTPYKTYpi y BHTJISIOL
3aKPUTHYHOTO TIPSIMOKYTHOTO XBHJICBOJTY 3 JTIEJICKTPUYHOKO BCTABKOKO.

Ji1 HayKOBUX Ta iH)KEHEPHO-TEXHIYHUX MPAIiBHUKIB y Tally3i Teopii mos, Gpizuku
TBEP/IOTO Tijla, TEOPETHYHOI Ta MPUKIIATHOI eNeKTPOANHAMIKH.
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Ileuamaemcs no pewenuio yueno2o cogema /[Henponempo8cKko20 HayuoHAaAIbHO2O
yuugepcumema umenu Onecs [ onuapa coenacno naany uzoanuti Ha 2013 e.

[IpencraBiieHbl pe3yabTaThl UCCICIOBAHUN IO BOMPOCAM TEOPETUYCCKOU (DU3UKH,
(bu3UKU TBEPIOTO TeNa U PATUOPH3HKH.

OO0Cy»X)1aroTcs BOITPOCHI OIICHKH BO3MOKHBIX CUTHAJIOB a0eieBoro Z' 0030Ha, IpuMe-
Henus SU(2) pemerouHol KanuOpOBOYHOMN TEOPUH TOJIsI, YCOBEPIICHCTBOBAHUS KOCMOJIO-
TMYECKUX MOJIENICH, OTMHMCAHUS MOJHOCTHI0 MOHU3MPOBAHHOW IIa3Mbl U BJIEKTPOMATHHT-
HOTO MOJISI B cpejie, 00pa30BaHHOMN HETIOIBHKHBIMH JIBYXYPOBHEBBIMH U3ITyUYaTEIIIMH.

PaccmarpuBatorcsi mpoOieMbl MONyYeHHs W HCCIICAOBAHMS CBOMCTB KOMIIO3UTHBIX
MaTEepPHUAIOB HA OCHOBE CHHTETMYECKUX OIAJIOB, ABYOKUCH BaHAJ¥sl, MHOTOKOMITOHEHTHBIX
BBICOKOIHTPOITMHAHBIX CIIABOB, MArHUTOTBEPJIBIX MATEPUATIOB B METACTAOMIBHOM COCTOSI-
HUK. TakKe MCCIeNyIoTCsl CTPYKTypa M CBOMCTBA TBEP/BIX PAacTBOPOB Ha OCHOBE MOHOOO-
pHuIa xenes3a, MPOIECChl KPUCTALIM3AIMA B MHUKPOIPOBOJAX U IEpe3apsiku B TOJIUKPU-
CTAUIIMYECKUX MOTYNPOBOIHUKAX. [IpeacTaBiieHbl pe3yabTaThl MOJCTUPOBAHHUS POIIECCOB
KPHCTALTN3AIUHA METAJIOB, a TAKKE PacueTa SHEPreTHIECKUX M TeOMETPHUYCCKIX XapaKTe-
PHUCTHUK KPEMHHUEBBIX HAHOKIACTEPOB.

HcenenytoTest mporecchl B BOJIHOBOAHO-UAIICKTPUUECKOH CTPYKTYPE B BUJIC 3aKPUTH-
YECKOT0 MPSIMOYTOJILHOTO BOJTHOBOJIA C JIUDJICKTPHUYECCKON BCTABKOIA.

Jisi Hay4dHBIX M MHXKCHEPHO-TEXHHYECKUX PaOOTHUKOB B O0JIACTH TEOPUHM IOJA,
(bM3HKH TBEPIOTO TeJa, TEOPETHUECKON U TMPUKIIAJTHOMN dJIEKTPOANHAMHUKH.
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The results of investigations in theoretical physics, solid state physics and
radiophysics are presented.

The problems on estimating the Abelian Z' boson signals, applying the SU(2) lattice
gauge field theory, modifying the cosmological models, and describing the completely
ionized plasma and electromagnetic field in medium consisting of the motionless two-
level emitters are discussed.

The problems on obtaining and investigating properties of composite materials based
on synthetic opals, vanadium dioxide, multicomponent high-entropy alloys, and hard
magnetic materials in a metastable state are considered. The structure and properties of
solid solutions based on iron monoboride, the crystallization processes in microwires, and
the recharging processes in polycrystalline semiconductors are also investigated. The results
of the metal crystallization process simulation and calculations for the Si - nanocluster
energy and geometrical parameters are presented.

The processes in a waveguide-dielectric structure in the form of cut-off rectangular
waveguide with dielectric insertion are investigated.
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Oles Honchar Dnipropetrovsk National University

AMPLIFICATION OF Z' SIGNAL IN e¢“e™ — u"u~ PROCESS

One-parameter observables with the best value-to-uncertainty ratio are proposed to
estimate possible signals of the Abelian Z' boson in the e*e”™ — u*u~ scattering process. The

value-to-uncertainty ratio is chosen as a natural criterion allowing the statistical
amplification of the signal in experiment. The model independent relations between the
Abelian Z' couplings to leptons are used in order to reduce the number of unknown
parameters of the particle. The observables are constructed by angular integration with
proper weight functions. In order to perform numeric optimization a set of orthogonal
polynomials is introduced taking into account the kinematics of the process. The optimal
weight functions are found to be smooth step-like functions close to the hyperbolic tangent
shape. The observables are applied to data on differential cross-sections obtained in the
LEP experiments. The Z' couplings to axial-vector and vector lepton currents are fitted
and compared to other estimates.

Keywords: high energy physics, Z' bosons, differential cross-section, integrated cross-
section.

OaHonmapaMeTpuueckue HalJaw0JaeMble € HAWJIYYIIHMM OTHOIIEHHMEM BeJUYHMHBI K
HeoNnpeaeIeHHOCTH NMpPeAJIOKeHbI AJISl OlleHKU BO3MOKHBIX CHTHAJIOB abejieBoro Z' 603oHa B

npounecce paccesnus e'e” — u*u” . OTHOMEHHe BeJHYHHBI K HEONpeaeJeHHOCTH BbIGPAHO B

KayecTBe eCTeCTBEHHOI0 KpHTepHs, MO3BOJAIOINEr0 CTATHCTHYECKH YCHJIMTh CHTHAJ B
3kcnepuMeHTe. Il yMeHbIIeHHs KOJIMYeCTBA HeHU3BECTHBIX MapaMeTPOB HOBOro 0030Ha
NPHUMEHAIOTCHA MOJEJbHO-HE3aBHCHMBbIC COOTHOLIEHHS MekKAY KOHCTAHTAMH CBS3H
abeqeBoro Z' c¢ Juenronamu. HaGniopaemble mOCTpPOEHBI YIIO0BBIM HMHTErpHPOBAHHMEM C
noaxoasimei BecoBoii (pyHkuueil. UncaeHHass ONTHMH3alMs BBINOJHSACTCH NPU NMOMOIIH
CHCTEMbl OPTOrOHAJBHBIX NOJHUHOMOB, BBEJACHHBIX € Y4YeTOM KHHEMaTHKH Ipoluecca.
OnTtumajbHble BecOBble GYHKIHH BBITJISAAAT CrIaKEHHBIMH CTYNEeHYATHIMH, NOXO0KHMHU HA
runepbonudyecknii Tanrenc. Hadaogaemble npuMeHeHbl K AU} depeHINAIBHBIM CeYCHHSIM
u3 3kcnepuMeHToB LEP. ®duTHpoBaHbl 3HAaYeHHS] KOHCTAHT CBfI3H Z' ¢ BEKTOPHBIMH H
aKCHAJbHO-BEKTOPHBIMH TOKAMHM JIENTOHOB U CONMOCTABJIEHBI C APYTMMH OlleHKAMHU.

KuaroueBble caoBa: ¢pu3uKa BBEICOKMX JdHepruil, Z' 6030HbBI, Au(depeHnanbHble CeYCHUS
paccesiHUs, HHTEerpajbHble CEUYCHUs PaCCesIHU.

OnHonmapaMeTpH4YHi cHocTepekyBaHi 3 HalKpamuM BigAHOIMIEHHSIM BeJHMYHHHU [0
HeBHM3HA4YEeHOCTI 3alpPONOHOBAaHI MJA ONIHKHM MOKJIMBHX CUTHaJIiB alejeBoro Z' 06030Ha B

npoueci poscisuns e'e” — "y~ . BinHoWIeHHS BeAMYMHH 10 HeBM3HAYEHOCTIi 00paHo B

SIKOCTI NMPHUPOAHOr0 KpuUTepilo, SAKUHA [JA03BOJASIE CTATHCTHYHO NOCHJIUTH CHITHAJI B
ekcnepuMeHnTi. Jlas 3MeHIIeHHs KiJIbKOCTI HeBiloMHX mnapamerpiB HOBOro ©6030Ha
32CTOCOBYIOTHCSI MOJAEJNbHO-He3aJIe’KHI  CHIBBIIHOMEHHSI MiX KOHCTAHTAMHM 3B’fI3KY
adeqeBoro Z' 3 gentoHamu. CnocrepexxyBaHi no0yaoBaHi KYTOBMM IHTerpyBaHHSIM 3
A0UiJBbHOI BaroBoi GyHkuico. YncelbHa onTuMizamiss BHKOHYETbCS 3a JOMOMOIOI0
CHCTEeMH OPTOTrOHAJLHUX MNOJIiHOMIB, BBeleHHX 3 YypaxXyBaHHSAM KiHeMaTHKH mponecy.
OntumanbHi BaroBi ¢QyHkuHii BHrJIAAA0THL 3rJaJ’KeHMMH CTYNeHeBHMH, CXOKHMH Ha
rinepooniuynuii Tanrenc. CmocrtepexxyBaHni 3acTocoBaHi A0 AudepeHuiiinux mnepepizip 3
excnepuMenTiB LEP. ®irtoBaHi 3HaYeHHS KOHCTAaHT 3B’A3KY Z' 3 BEeKTOPHHMMH Ta
aKciaJbHO-BEKTOPHUMH CTPYMAaMHU JIENTOHIB i NOpPiBHAHI 3 iHIIMMH oniHKaMu.

Kurouogi ciaoBa: dizuka Bucokux eHepriit, Z' 6030ubI, qudepeHuiiini nepepizu po3cisiHHA,
IHTerpaibHi Hepepi3u pPO3CisHHS.

© A. V. Gulov, Ya. S. Moroz, 2013
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Introduction

Electron-positron colliders provide possibility of precise measurements in high-
energy physics. The history of LEP experiments showed that lepton processes can be
sensitive to off-shell signals of physics beyond the standard model (SM). Unfortunately,
the LEP statistics was not rich enough to detect clearly some signals of new heavy particles.

The special observables were designed to select probable signals of the Abelian Z' boson
in various LEP processes [1, 2]. In particular, a one-parameter sign-definite observable

was constructed as a generalized forward-backward cross-section of e"e” — 1" i~ process,

and a hint of Z' boson was found at one standard deviation. However, the latest LHC
experiments allow to conclude that the maximum likelihood values of Z' couplings from
Ref. [1] seem to be overestimated. At the present time, the most powerful observables for

Z' boson in e"e” —> u'u” are found [3]. So, it is possible to revise the LEP data by

means of the new approach.

Let us describe briefly main checkpoints of the present investigation. We use
common phenomenological parameterization of Z' couplings with SM fermions as well as
the model-independent relations between the Z' couplings [4]. The optimal one-parameter
observables are constructed as the cross-sections integrated over the scattering angle with
proper weight functions maximizing the value-to-uncertainty ratio for the observable.
Then, we fit LEP data using the observables in order to estimate Z' coupling.

The low-energy phenomenology of the Abelian Z' boson

The Abelian Z' boson [5-7] is usually described by its couplings to vector and axial-vector
currents. In general, there is also the mixing between Z and Z' bosons. The corresponding
Lagrangian is

L, = %Zﬂ?}/”[(vff +y’ay, eos Oy + (v, +7a,)sin 6,11,
1., = .
L?fz' :EZ” S, +;/5a/,)cosé’0 —(vfgl +;/5af§4)sm 6,1f (1)

where we omit effective interactions inspired by loop corrections and next-to-leading
order terms in inverse heavy mass scales.

Not all the coupling constants in (1) are independent, if we assume the Abelian Z' boson
associated with an effective U(1) gauge symmetry at low energies. If we consider the
single neutral vector boson with a mass of order TeVs, the following relations arise [4]

Vitnea = Vi) = 7245 Ay = g = 4

. 2
0, = —aS20) [ m, j o

Jara,, \my

where T is the third component of the weak isospin, and the fermions are taken from the

same SM doublet. The relations can be motivated by general theoretical reasons (gauge
symmetry, renormalizability at energies of the Z' decoupling) which are described in
details in Ref. [4]. Let us note that the relations (3) cover a wide set of popular Z' models.
In this regard, they can be called model-independent. Considering the cross-sections at
energies below the Z' mass, it is convenient to use couplings

_ mZ _ mZ
a;=——""—a,;, Vy=—F7——V,. 3)
/ Narxm / / Nadrm /



Amplification of Z' signal in e*e™ — u"u~ process

The virtual Z' boson state contributes to the differential cross-section of e“e™ — u™ u~

process. In the lowest order in the inverse Z' mass the cross-section deviates from its SM
value as

SM _ J—
do_do " _ R,y + Fy(s, 2yave +
dz dz
+F'3(\/§,Z)E\_)y +F4(\/§,z)\_ze\_z# +... 4)

where z =cos§, is the cosine of the scattering angle and dots stand for higher

corrections in the inverse Z' mass. Factors F; arise from the interference between the SM

scattering amplitude and the Z' exchange amplitude. They have to be computed
numerically taking into account both the tree-level contribution and loop corrections.
Being measured in experiments, the cross-section (4) allows to estimate the Z'

couplings a, Ve, and v, . A non-zero value of some coupling mentioned can be called

the Z' signal.

Minimal number of unknown parameters is preferable in fitting data. Therefore,
one-parameter observable is the most prominent from the statistical point of view.
Moreover, sign-definite observable is more informative, since it can also reject the
hypothesis, whereas sign-indefinite one can only accept the signal. These properties are
especially important in case of statistics which is not rich enough to detect clear signals at
high confidence levels. Fortunately, the cross-section (4) contains one sign-definite term

—2
with a . If we could select this term in the cross-section, we would obtain a powerful
observable to detect Z' signals in experiments. In case of lepton universality the term with
Ve v, also becomes sign-definite.

It is also worth to note that factors F,; are small with respect to £, ,. Their

contributions to the cross-section are about 1%, and their existence does not affect the key
ideas of the present investigation. So, the Z' signal in e"e¢” — u" 1~ can be discussed as
two-parametric.

The observables

_2 —_— p—
The differential cross-section (4) contains two leading terms at @ and v. v, . The

corresponding factors F; (\/E ,z) are the functions of energy and scattering angle. We can

use angular integration in order to suppress one factor comparing to another. Actually,
this means that we will construct some integrated cross-section with specific properties.

In general, integrated cross-sections are well known in the literature. The most
popular integration schemes are based on bin summation with equal weights but opposite
signs. As examples, we can mention the total cross-section, the forward-backward cross-
section, the center-edge cross-section, etc. However, the equal weight of bins is just a
possible option. The most general integration scheme can be described by weight
function p(z):

SM
do do ] 5)

o= jl dzp(z)(g -
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In these notations, the popular mentioned cross-sections correspond to step-like
weight functions. The observables used in previous analysis of LEP data are also based
on step-like weight functions.

The statistical uncertainty of the observable (5) can be estimated taking into account
that the actual number of events in bin is distributed under the Poisson distribution. This
means the variance of events coincides with the average number of events. Then, the
standard deviation of the observable is [3]

11 dO_SM
oo = |—|dzp? 6
o JLl 2p*(5) = (6)

where L is the integrated luminosity of the experiment.

Let us consider the observable which amplifies the Z' signal as much as possible.
This aim can be reached by maximizing the value-to-uncertainty (signal-to-uncertainty)
ratio where the weight function is assumed to be varied in the optimization procedure.
The general algorithm to find the optimal weight function is described in details in [3]. In
the present paper we mention briefly just the main steps of the algorithm.

1 do do™
[p(2) =7 - 2
o % dz dz
abs 3o oc abs 1 — max (7)
o
[ %%a:
dz

-1

In fact, the optimization (7) has to be performed under additional constraints. First
of all, the normalization of the weight function must be taken into account, since (7) is
evidently invariant under the rescaling of the weight function. We choose the
normalization

1
Idzpz(z) =1. (8)

Second, the weight function is chosen to suppress all the factors in the differential
cross-section (4) except for either /| or F,. The most general scheme takes into account

both the contributions of leading factors F;, and small factors F, ; in the differential

cross-section (4). In order to select the factor F| we can minimize the cumulative relative

contribution of the factors F, 5, :

24: abs(j. dzp(z)F, (\/;, Z)J

— min 9)

24: abs(j. dzp(z)F, (\/;, Z)j

The factor F) is selected in a similar way using F, , ; in the nominator. Eq. (9) does

not specify a unique weight function, it defines a subspace in the Hilbert space of p(z). It
is clearly seen from the fact that Eq. (9) does not change when a function orthogonal to
F, ;4 is added to p(2).



Amplification of Z' signal in e*e™ — u"u~ process

The optimization (7) with the constraints (8) and (9) has to determine uniquely the
weight function p(z) for the most amplified Z' signal in the considered process. These
calculations require choosing some basis in the Hilbert space of weight functions.

The most natural basis takes into account the kinematics of e'e” — u" 1~ process.

Due to the absence of the flavor-changing neutral currents, there are no virtual bosons in
the t-channel. Moreover, all the leptons can be considered as massless. This leads to the
well-known two-polynomial structure of all the factors in the differential cross-sections:

F(Vs.2)=a,(Js)p/(2) +b,(Vs)p,(2) (10)
where p,(z)~z, p,(z)~(1+2z%). In this regard, it is convenient to use orthogonal
polynomials as a basis in the Hilbert space of weight functions. We define orthogonal

normalized polynomials in the standard way,

e
jdzn(z)p,(z) {0’ I iy

The full set of polynomials can be reconstructed starting from p, and p, and
increasing the largest power of the polynomial [3

e
\/7(1—— , Py =5\/;(523—3z). .(12)

Weight function p(z) can be expanded by p; :

p(z)= icipi (2). (13)

Then, the normalization condition (8) becomes

0

del=1. (14)

i=1

Since the Z' contributions to the cross-section are described by two polynomials p, ,, we
use the fixed direction in the functional subspace based on p, , in order to suppress

either [ or F, factor:

k=c,/c,. (15)
This can be done by means of (9). The numerical analysis shows that the corresponding
relative weight of F| or F, is 0.98. Thus, we can estimate the systematic error of the

variable as 2 %.
There is also the normalization condition (14) allowing to determine one of the
coefficients through the others. For instance,

l—c2—c?—...
o w

Thus, two coefficientsc, and ¢, are explicitly expressed by the other coefficients.

Asaresult, ¢;, ¢, ,... are to be varied to find the maximum (7).
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In fact, the usage of orthogonal polynomials is just calculation tool to perform
optimization (7) to find the most effective weight function. However, a convenient
'natural' basis helps us to obtain results in the most quick and simple way.

The signal-to-uncertainty ratio is maximized to find the coefficients at polynomial
expansion (13). Increasing the number of polynomials in (13) we can observe asymptotic
behavior of p(z). We can estimate the relative accuracy of the result comparing the weight
functions at the current and previous steps of the calculation:

1
77 = J.dz(pcurrent - pprevious )2 . (1 7)
-1

Using eight polynomials from the basis, we find 77<0.01 at all the considered energies,

which is below the systematic theoretical error (2%) of the observables. The results of
optimization are shown in Tables 1, 2.
Table 1
-2
The results of optimization of the weight function to select a for LEP energies. The parameter
k =c, /¢y is computed in accordance with (9), the coefficients ¢; in (13) are found by (7)

x/; , GeV k <) c) c3 cy Cs Cg cy cg
130 -0.567 0.770 | -0.437 -0.416 | 0.193 -0.011 -0.050 | -0.044 | 0.019
136 -0.524 | 0.802 -0.420 -0.392 | 0.141 0.025 -0.061 -0.040 | 0.014
161 -0.425 0.863 -0.367 -0.330 | 0.036 0.076 -0.056 | -0.017 0.000
172 -0.402 0.876 -0.352 -0.314 0.014 0.083 -0.052 -0.011 -0.003
183 -0.385 0.885 -0.340 -0.302 -0.002 0.086 -0.048 -0.007 -0.004
189 -0.377 0.889 | -0.335 -0.296 | -0.009 0.088 -0.046 | -0.006 -0.005
192 -0.374 | 0.891 -0.333 -0.294 | -0.012 0.088 -0.045 -0.005 -0.005
196 -0.369 0.893 -0.330 -0.291 -0.016 | 0.089 -0.044 | -0.004 | -0.005
200 -0.365 0.894 -0.327 -0.288 -0.019 0.089 -0.043 -0.003 -0.006
202 -0.363 0.895 -0.325 -0.287 | -0.020 | 0.089 -0.042 -0.003 -0.006
205 -0.361 0.897 -0.323 -0.285 -0.023 0.090 -0.041 -0.002 -0.006
207 -0.359 0.897 | -0.322 -0.284 | -0.024 | 0.090 -0.041 -0.002 -0.006

Table 2

The results of optimization of the weight function to select ;e v « for LEP energies. The parameter

k =c, /¢ is computed in accordance with (9), the coefficients c; in (13) are found by (7)

\/g , GeV k q Cy c3 Cy4 s C cy cg
130 -1.258 -0.597 0.751 0.230 -0.150 0.009 0.039 0.034 -0.015
136 -1.362 | -0.579 | 0.788 | 0.174 -0.102 | -0.018 | 0.044 | 0.029 | -0.010
161 -1.678 | -0.510 | 0.856 | 0.052 -0.021 -0.045 0.033 0.010 | 0.000
172 -1.775 -0.490 0.870 0.025 -0.008 -0.046 0.029 0.006 0.002
183 -1.856 | -0.474 | 0.879 | 0.006 0.001 -0.046 | 0.025 0.004 | 0.002
189 -1.894 | -0.466 | 0.883 -0.003 0.005 -0.046 | 0.024 | 0.003 0.003
192 -1.912 | -0.463 0.885 -0.006 | 0.006 -0.046 | 0.023 0.002 | 0.003
196 -1.934 | -0.459 | 0.887 | -0.011 0.008 -0.046 | 0.022 | 0.002 | 0.003
200 -1.955 -0.455 0.889 -0.015 0.010 -0.045 0.022 0.002 0.003
202 -1.965 -0.453 0.890 | -0.017 | 0.010 -0.045 | 0.021 0.001 0.003
205 -1.980 | -0.450 | 0.891 -0.020 | 0.011 -0.045 | 0.021 0.001 0.003
207 -1.989 | -0.449 | 0.892 | -0.022 | 0.012 -0.045 | 0.020 | 0.001 0.003

In Figs. 1, 2 we show how the optimal weight functions depend on the collision
energy. As it is seen, the result is stable for different LEP energies.

10
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Fig. 2. The optimal weight functions to select V. v, for different LEP energies.

Data fit

Data fit is performed in the standard way using chi-square function to combine
different scattering energies together. First, we calculate both the mean values and the
statistical uncertainties of our observables at different energies taking data on differential
cross-sections published by the LEP Collaborations [8-10]. Dividing the values by a
known numeric factor, we compute the experimental estimate of either a2 or Ve vy . In
this way we obtain 21 data points for each type of observables. After that, we combine all

11
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the data points altogether by means of the standard chi-square technique obtaining the
mean values and the uncertainties of the Z~ couplings:

a =(1.4369£4.8614)x10™°, v.v, =(~7.5890 £ 6.0377)x 10~
Conclusions

Let us discuss the obtained results. First of all, the uncertainty of a2 is close to the
uncertainty within the indirect measurement of the axial-vector coupling by the total
cross-sections and forward-backward asymmetries [1]. However, we use less data points,
since the differential cross-sections were not published for some LEP energies depending
on the collaboration. This reflects the fact that the new observables are more statistically
powerful with respect to the observables used in [1].

—2
Second, the mean value of a decreases comparing to the indirect estimates [1].
This is in accordance with the latest constraints from the LHC [11] showing that this

coupling should be about 10~ rather than 10~ .
Finally, the mean value and the uncertainty of the vector coupling are quite large, so
we cannot interpret them as some signal of the particle.

The new observables for searching for Z’ signals in e’e” — u* 1~ process show

they can be useful in data fitting. They have good perspectives in future experiments at
lepton colliders such as the ILC.
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SPATIAL STRUCTURE OF THE POLYAKOV LOOP IN EXTERNAL
CHROMOMAGNETIC FIELD IN LATTICE SU(2) GLUODYNAMICS

Spatial distribution of Polyakov’s loop in 3+1 dimensional SU(2) lattice gauge field
theory is investigated in the presence of constant external Abelian chromomagnetic field
H at finite temperature. The external field corresponds to the third group generator and

is directed opposite X axis. Monte-Carlo simulations are performed on the 2x16° lattice
at f=3, and various values of flux of the external field. The flux on the lattice is

introduced through the so-called “twisted” boundary conditions. These conditions are the
modification of the standard periodic boundary conditions and allow introducing an
additional flux of the external field. The computations are performed with graphic
processing units, the computer program is written in C++ language using OpenCL. It is
discovered that in the presence of the external field the Polyakov loop has a non-trivial
periodic spatial structure that is in contrast to a rather uniform distribution in the field
absence.

Keywords: lattice gauge field theory, chromomagnetic field, “twisted” boundary
conditions, Polyakov loop, SU(2) gluodynamics.

B 3+1 SU(2) pemréroyHoii KaJJUOPOBOYHON TeOPHH MOJIS NPH KOHEYHOI TeMImepaType
H3ydaercsi INPOCTPAHCTBeHHOe pacnpeaenenne mnerau IloasgskoBa B MNPHCYTCTBHH
NOCTOSIHHOTO0 BHeHmHero adeleBa XPOMOMATHHTHOro mnoast /, COOTBeTCTBYIOLIEro
TpeTbeMy TeHepaTopy Tpynnsl M HampaBJeHHOro mnpoTuB ocu X. Monrte-Kapio

MOXeIHPOBAHME NPOBOAMIOCH HA peméTke 2x16°nmpm f=3 u npu pasHBIX 3HAYEHHSX

NMOTOKA BHENIHEro MOJisi, KOTOPBIii BBeJeH HAa PemIETKY ¢ MOMOIILI0 TaK HAa3bIBaeMBIX
«MOAKPYYEeHHBIX» TPaHHYHBIX YCJHOBHii. JTH YycJIoBUS SBIAAKTCA Moaumpukanmuei
CTAaHAAPTHBIX MePHOAHYECKHUX TPAHMYHBIX YCJIOBHii, MO3BOJsIIOMEl BBECTH Ha PemETKY
JONMOJIHHTEJNbHbIi  MOTOK  BHEIIHEro  MNOJsi. BpIYHMCIeHHsT  NPOM3BOAMJIHNCH €
HCHOJIb30BAHHEM BHA€0KAPT, KOMNbIOTEpPHAas NporpaMMa HanmucaHa Ha sa3bike C++ ¢
ucnoab3oBanuem OpenCL. OOHapyskeHO, 4YTO NpPH HAJUYUMH BHEMIHEr0 MOJSA
pacnpejaesenue neTJn MonskoBa umeet HETPUBHAJIBHY IO NepHoOIHYECKY IO
NPOCTPAHCTBEHHYI0 CTPYKTYpPY, B TO BpeMsi KaK B OTCYTCTBHE BHEIIHEro moJsi eé
pacnpejejieHne cKopee 0JHOPOIHO.

KawueBble ciaoBa: pemérouyHas KaauOpoBOYHAs TEOPHsS IOJSA, XPOMOMarHMTHOE IOJIE,
«IMOAKPYYEHHbIEY» IpaHUUHbIE ycioBus, netias [lonskosa, SU(2)-rawooquHaMuKa.

B 3+1 SU(2) rparkoBiii kaniépyBaabHiii Teopii moast npu ckiHyeHHili TemmepaTtypi
BMBYA€EThCA mNpocTopoBHii po3noain meryai IlonsikoBa mnpu HasiBHOCTI mocTiiiHoro
30BHIiIHBOro a0ejieBOro XpOMOMATrHITHOro nmoJyast / , BiANOBiAHOI0 TpPeTHLOMY reHepaTopy
rpynu i cnpsMoBaHoro mpotu oci X. MoHTe-Kapigo MmoaenioBaHHSI NPOBOAHMJOCH Ha

rpatni 2x16°mpm f=3 i npu pi3sHHX 3HAYEHHSX MOTOKA 30BHIMIHLOrO MOJS, AKHIl GYB

BBeJleHUII 3a JONOMOroK0 TaK 3BaHHUX «MiAKpPyY4YeHHX» rpaHu4YHuX ymoB. Ili ymoBu €
Moandikalicl0 CTAHAAPTHUX NepPiOAMYHUX TFPAHHYHHX YMOB, sIKa J03BOJISIE BBeCTH Ha
IpaTKy A0AATKOBHUIl MOTiKk 30BHiIHBLOro moJisg. Po3paxyHku mpoBOAUIHCS 32 JONOMOIOI0
BigeokapT, KOMI’IOTepHAa nmporpamMa Hanucana MoBow C++ 3 Bukopucranuam OpenCL.
BusiBieHo, mO0 3a HasABHOCTI 30BHIMHBLOro moas posmoxain merai IMoasxkosa Mae
HeTPUBiaJbHY NepiogMYHY HNPOCTOPOBY CTPYKTYpPY, B TOHl 4ac AK 3a BigcyTHocTi
30BHIIHBOrO moJs ii po3moaia ckopim ogHOpiAHUI.

KawuyoBi caoBa: rpaTkoBa KaniOpyBalbHa TeOpis TMoJsA, XpPOMOMAarHiTHe mole,
«migKpydeHi» rpaHu4Hi ymoBH, nmetias [lonskosa, SU(2)-rmrooaguHamika.

-© V. 1. Demchik, N. V. Kolomoyets, V. V. Skalozub, 2013
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Introduction

Interest for studying of quantum phenomena in external magnetic fields is steadily
growing. This is stimulated by increasing of experimental data obtained at modern
colliders of particles and astrophysics observations (see [1, 2] and Refs therein). Modern
experiments demonstrate the importance of accounting for effects related to magnetic fields in
different phenomena of high-energy physics. In this regard, it is reasonable to reconsider
known quantum effects with taking into account the presence of magnetic fields.

One of such phenomenon is a deconfinement phase transition. The Polyakov loop is
the order parameter of it in the SU(N) gauge theories. In continuum limit, it has zero
value in confinement and is non-zero in deconfinement phases. The peak of Polyakov
loop susceptibility considered as a function of temperature corresponds to the temperature
of deconfinement phase transition [3]. The Polyakov loop is sensitive to breaking of Z(N)
center subgroup of SU(N) gauge group [3, 4]. It allows for studying the quark-antiquark
potential as well as other implicit parameters.

There are several basic approaches to investigate the deconfinement phenomenon.
Nowadays, the most popular method is Monte-Carlo (MC) simulations on a lattice. It
allows for getting numeric estimates of the quantities studied. In the present paper this
method is applied. At zero external fields, the Polyakov loop properties are well investigated
in the literature [3-5]. But this is not the case if the field is switched on. Even the influence of
the field on the temperature of the phase transition is not settled finally [6].

As shown in literature, the value of the Polyakov loop in SU(2) gauge theory
decreases with increasing of the applied external field. This means the increasing of the
temperature of deconfinement phase transition with increasing the value of the strength of
external field [6]. The opposite behavior is detected in the SU(3) gluodynamics.

The present paper is devoted to investigation of influence of the external Abelian
chromomagnetic field on the Polyakov loop. We study the spatial distribution of the
Polyakov loop for different values of field strengths at finite temperature. The values of
the loop obtained from Monte Carlo simulations are averaged over the plane
perpendicular to the external field direction. The distribution of this quantity along the
field axis is the main object investigated.

Basic theory

Below, the standard lattice Wilson action for SU(2) lattice gauge theory
p
Sp=% % SReTr(1-U,,(n)) (1)

ned u<v
is used. Here, U ,,(n) = U, (n) U, (n+ p) Uu+(” +9)U," (n) is a plaquette variable, i is
the unit vector along u direction, u= {1,2,3,4}, u=4 corresponds to the Euclidian

time direction, f =4/ g2 is the inverse coupling constant, / is the 2x2 unit matrix and

summation is performed over all sites of a lattice 4 and over all directions. Variable
U, expresses the gauge field on the lattice,

iA (x)a
Uyx)=e "0, )
where 4, (x) is a gauge field potential in continuum theory, a is a lattice spacing.

To introduce the external field, twisted boundary conditions are used [7]. They read
Uﬂ(nx,ny,Nz,n,):QUﬂ(nx,ny,O,nt), 3)
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d- i¢/2, —ip/2 :2;
o) :{ lag(e e ),,u (4)

I, u#2,
N _ measures a number of lattice sites in z direction; ¢ is the flux of the external field.

This means that the external constant chromomagnetic field is H= (— H,0,0). If =0,

then these boundary conditions restrict to the usual periodic ones. The connection
between flux and field strength is the following

H=2 (5)
a
The relevant quantity, the Polyakov loop, is defined as usually [5]:
Nt—l
P(ii) = Tr {HUA; (m, 1)} (6)
=0

which is discretized version of its definition in continuous theory,
P(¥)= Texp[ig{)dr AO(TC,T)], (7)
T denotes time ordering. The equation (6) is a trace of the ordered products of all time-

directed links corresponding to the space point 7 . It gives a closed loop due to the
periodic boundary conditions in the time direction.

Simulation results

In this investigation the standard MC lattice simulations are performed. To update a
lattice the multi-hit heat-bath algorithm is used (the number of hits 10 is taken).
Pseudorandom numbers are produced with RANLUX3 generator.

Production of pseudorandom numbers, updates of the lattice and measurements are
performed with graphics processing unit (GPU). Averaging over a configuration is also
performed with GPU. Averaging over run is performed with central processing unit
(CPU). Computer program is written in C++; the GPU kernels are written in Open
Computing Language (Open CL). The trivial parallelization is used: all the GPU
procedures are performed in parallel, but there is not parallelization between GPUs.

All calculations are carried out with double precision. The simulations are
performed with GPUs of HGPU cluster based on nVidia GeForce GTX 560 Ti, AMD
Radeon HD 7970 (Tahiti), HD 6970 (Cypress) and HD 5870 (Cayman).

All the simulations are performed on the 2 x16> lattice at £ =3 and flux ¢ up to
0.15. In this case lattice spacing equals to a = 0.0940246 fm. The relevant quantity is
Polyakov loop for every x coordinate. After 300 thermalization sweeps the measured
value is obtained as an average over 500 configurations. Nine bulk sweeps are performed
to decorrelate configurations used in measurements. There are up to 18500 runs performed
in the presence of chromomagnetic field and up to 46000 ones in the absence of it.

Within one sigma accuracy it is obtained that the Polyakov loop in the presence of
non-zero chromomagnetic field has some periodic structure. It can be seen that the field
brings a decrease of the variance of the loop. Also, we observed a non-monotonic
behavior of the mean value of the loop as function of H .

To investigate the shape of the distribution of the measured quantity the standard

;(2 fit method is used. Every data set is fitted by a straight line corresponding to the
mean of these data, by a single sine function and by combinations of two sine functions.
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To avoid edge effects in fit, the data are periodically extrapolated from both sides. In fact,
three periods along x axis were used in the fit. Fit results are presented in Table 1.

The data in columns are the values of minimal ;(2 corresponding to the four values of
@ investigated and to the functions tried. In the gray cells the functions used are placed:

e fi(x)=M, M isthe mean value of the Polyakov loop over interval of x;

o f,(x) :M+asin(27r§+x0);

. x . X
o fi(x)=M +a, s1n[27r?+le+a2 51n[27z?+x2}

1 2

o [i(x)=f1(x)0(b, —x)+ [, (X)[1-0(b, —x)]0(b, —x)+ f,(x)[1-0(b, — x)],
. X . X
f,(x)—alsm£27r?+xlj, f,,(x)—azsm(27zX +x2j,

1 2
where 6(x) is the Heaviside theta-function, 8(0) =1.

Table 1
The fit results; @y = 0.000591195
Function a

0 Po 1690 2569,
f1 0.1364 11.83 20.31 13.7
o 0.08913 8.270 13.42 11.35
f3 0.06628 5.836 11.13 9.729
f1 0.07405 2.843 4.616 3.923

The last function means that the period of resulting function is divided by two
intervals, and the data in each interval are described by different sine-function; b, and b,

are the points of the connection of these curves. The minimal ;(2 values presented in the
Table 1 correspond to the one period of data.

It can be seen from Table 1 that in the field presence the best fit function is the
combination of two sine functions in different regions of data. The )(2 corresponding to

this function is in several times less than the one for the case of straight line, so such non-
trivial distribution of the Polyakov loop is more preferred than the uniform one. If the
external field is absent, the best fit function is superposition of the sine ones. However,
for this case all fit functions give almost the same y° because of a high variance, so all
of them describe the data almost equally well. The data sets and the corresponding best
fits are shown in Fig.1.

The space structure of the Polyakov loop may result in a chromoelectric field in the
deconfinement phase. To our knowledge, this interesting phenomenon was not discussed in
the literature. It requires further investigations which are out of the scope of the present paper.

Conclusions

In the present paper, a constant chromomagnetic Abelian field is introduced on the
lattice through the twisted boundary conditions. The distribution of the Polyakov loop
along the field direction is investigated for different values of field flux. It is observed
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Fig. 1. Data sets for zero and non-zero fluxes and corresponding best fit curves:
a) p=0b) p= 256§00 . Error bars correspond to the 68% confidence intervals.

that in the field presence the Polyakov loop has a non-linear structure, within one sigma
accuracy. If the external field is zero, such structure is not elucidated. The data fit shows
that the distribution of the Polyakov loop is preferably described by a combination of two
sine functions in two different intervals of data along the axis investigated. This
observation is a signal of interesting new features of the deconfinement phase. These will
be investigated separately.
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FITTING OF BINDER CUMULANTS IN SU(2) - GLUODYNAMICS

The Binder cumulants are calculated and analyzed in SU(2) lattice gluodynamics. The Binder
cumulant is lattice observable quantity, which is constructed out of powers of the Polyakov loop. It
describes different aspects of the lattice theories and equals to scaling function in case of SU(2) theory.
Such computations become possible due to a technology of calculations on the graphics processing unit
(GPU). GPU is used as a computing platform allowing a huge amount of statistical data to be treated
over a short period of time. The statistics gathered allows the study of Binder cumulants for a great
number of various lattices. Main features of cumulants fitting are described and discussed in detail.
The cumulant fitting function is proposed which is based on analysis of obtained data. A few data
points (10 up to 20) are sufficient for computation of this function. The important feature of the
function constructed is ability to estimate quickly the critical value of the inverse coupling constant S

on a lattice. The procedure of determination of the intersection point of Binder’s cumulants, which
should cross in one point, is considered. The updated fitting procedure is proposed for determination of
such cumulants. The application of the results is discussed.

Keywords: SU(2) gluodynamics, lattice gauge theory, Monte-Carlo calculations, deconfinement
phase transition.

B SU(2) rmooauHaMuKe Ha pelleTKe BBLIYMCASIOTCH H AHAJIM3UPYIOTCS KyMyJasHTbl Bunpepa.
Kymyasint bunjepa siBasieTcsi Ha0/1101aeMoii Ha pelieTke BeJIMYHHOM, KOTOpasi CTPOUTCSI M3 CTeNeHeil
nersin IlonsikoBa. OH onMchIBAaeT pPa3jiMYHbIe aCNEKThI PelleTOYHbIX Teopuii U B ciaydyae SU(2) Teopnn
coBmajzaer ¢ MacmiTadHoil ¢ynkumeii. Takue pacyersl cTajJM BO3MOXKHBIMHM $JIaroJapsi TEXHOJIOTHMH
BbIYMCJIeHMiI Ha rpadguyeckux npoueccopax. I'paguueckux mnpoueccopbl HCNOJIBL3YIOTCS B KayecTBe
BBIYHCINTEIbHOH MIATQPOPMBI, YTO IO3BOJSET MOMYYATH O00JbIIOE KOJIMYECTBO CTATHCTHYECKHX
JAHHBIX 32 KOPOTKHIi NMpoMe:kyTok BpemeHd. CoOpaHHasi CTATHCTHKA [e/1aeT BO3MOKHBIM H3ydeHHe
KyMyJsIHTOB BuHaepa Ha 001bII0M KOJWYeCTBe pPa3INYHBIX pemeTok. OmHcaHbl H J1eTAJILHO
00CyKIAI0TCSl OCHOBHBIE 0COOEHHOCTH (puTHpOBaHMSI KyMYJAHTOB. OnHpasich HA aHAJIM3 MOJYyYeHHBIX
JAHHBIX, Npenao:keHa (uTHpywmAas QyHKUMs Aasi KymyJasHTa. Jisi BbIYHCJIeHHMsl 3Toil (yHKIuH
JAOCTATOYHO HecKO0JbKO Touek (0T 10 1o 20). BaxxHasi 0c00€HHOCTH NOCTPOEHHOI (GYyHKIUHU 3aK/II0YaeTCs
B BO3MOKHOCTH OBICTPO OLIEHUTH KPHTHYECKHE 3HAYeHHs 00PATHON KOHCTAHTDI CBSI3U [ Ha pelIeTKe.

PaccmoTpena nponeypa HaXo:KAeHUs TOYKH NepeceveHus TeX KyMyJISIHTOB Bunjiepa, KoTopble 10/ KHBI
nepeceKkaTbesl B 01HOM Touke. OfcyKaaeTcs NPHMeHEeHHe MOy YeHHbIX Pe3yJbTaTOB.

Kawuepsbie ciaopa: SU(2) rmoonuHaMuka, KanuOpoBouHas Teopus Ha pemerke, Monre-Kapno
BBEIYHCIICHUS, (Pa30BbIil epexo K TeKoH(paiMeHTy .

¥ SU(2) rmooauHamini Ha rpaTUi 00YNCIIOIOTHCA Ta aHATI3YIOThesl KyMyJssHTH Binaepa. Kymyssinr
Binnepa € BeJIMUnHOIO, 110 CHIOCTEPIracThesl HA IpaTLi Ta siKka No0yAoBaHa i3 ctyneHiB neti Iloskosa. Bin
onucye pi3HOMAHITHI acmeKTH IpPaTKOBUX Teopiii Ta y Bunmaaky SU(2) teopii cmiBmagae 3 MacmradHoIo
(yskuiero. Taki 004ymuciIeHHS CTaJd MOXJIMBMMH 3aBJIAKHM TEXHOJIOIii po3paxyHkiB Ha rpadiynHnx
npouecopax. I'padiuni npouecopm BHKOPHCTOBYIOTBCSH Yy SIKOCTI 00YHMCIIOBAJILHOI IIaT(OpPMH, IO
J03BOJISIE OTPUMYBATH BEIMKY KUIbKICTh CTATHCTHMYHHX JAHHUX 32 KOPOTKI mpoMmikku 4acy. 3i0paHa
CTATHCTHKA POOUTH MOAIMBUM JOCJTiiKeHHs KyMyJsiHTiB Binaepa Ha Besukiii kinbkocTi pisHOMaHITHIX
rpaTok. Onucaxi Ta AeTajJbHO 00roBOPIOIOTHCS OCHOBHI 0c00,IMBOCTI iTyBaHHSA KyMyJsHTIB. Ciupaw4uch
HA aHAJI3 OTPUMAHUX JAHUX, NPONOHYETbcs (ityroua GyHKUiss Ast KyMyasiHTIB. s o0uucieHHs wiel
¢yskuii gocratHbo aekiibka Todyok (Bix 10 mo 20). BasimBa ocodiuBicTh 3anponoHOBaHOI (yHKII
HOJIATA€ Y MOKIMBOCTI INBUIKO OLIHUTH KPUTHYHE 3HAYEHHS 00ePHEHOI KOHCTAHTH 3B'SI3Ky [~ Ha rparui.
Po3rsinyTo mpomenypy 3HAXOMKeHHSI TOYKH NepeTHHY THUX KymyuasHTtiB bBingepa, siki moBumHi
NepPeTUHATUCDH Y O/Hil Touni. O0roBOpIOIOTHCS 32CTOCYBAHHS OTPHMAHUX Pe3y/IbTaTIB.

KawuoBi caoBa: SU(2) rmooxnHamika, KamiOpyBambHa Teopiss Ha Iparui, Monre-Kapmo
po3paxyHkH, (ha30BHil epexis 10 AeKOH(paHMEHTy.

© S. S. Antropov, 2013
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Introduction

The Polyakov loop is quantity of interest in Monte-Carlo (MC) calculations in the
lattice gluodynamics. In particular, it was used for calculation of critical indexes in
SU(2)-theory [1]. The value of the Polyakov loop is an important order parameter of
SU(N)-theories. It reads

P:izlrrﬁU - (1)
N 52

=1

where N_ is the number of lattice sites in each spatial direction, NV, is the number of lattice
sites in the time direction, the summation is assumed over all the spatial coordinates of lattice

sites x . There are such quantities, which can be constructed out of powers of the Polyakov
loop and describe different aspects of the theory. One of them is the Binder cumulant [2]

g zﬂ_3 2
T 2)

where brackets <> mean the averaging over MC configurations. The particular interest of

studying (2) has arisen after ref. [2]. Such cumulant identically coincides with the scaling
function of SU(2)-theory [2] and has been used for the critical temperature calculation [3, 4].

In present paper we analyze Binder cumulants. Such cumulants are calculated on
various lattices to demonstrate features of fitting of the cumulants.

Lattice computations of the Binder cumulant

The Binder cumulants are investigated in SU(2)-gluodynamics on the lattice.
Computer modeling is carried out using Monte-Carlo method. In the MC simulations, we

use the hypercubic lattice N, XN; with hypertorus geometry. The spatial part of the

lattice is cubic. The main features of the chosen MC procedure are listed below. We
chose the heat-bath as working algorithm in MC procedure. We use standard form of the
Wilson action of the SU(2)-lattice gauge theory. We use the thermalization procedure to
generate initial conditions for MC calculations. We chose common values for MC
parameters: 200 thermalizing sweeps, then 1000 working MC iterations [5, 6]. We set up
to 8 MC attempts for MC updating of each of lattice variables [5].

A few words should to say about our computing platform. We use the General Purpose
computation on Graphics Processing Units (GPGPU) technology allowing studying large
lattices on personal computers. The performance analysis indicates that the GPU-based MC
simulation program shows better speed-up factors for big lattices in comparison with the
CPU-based one. The GPU vs. CPU (single-thread CPU execution) speed-up factor is above
50 for the majority of lattice geometries and for some lattice sizes can overcome the factor
100 [7]. We use the video controller of the personal computer with GPU manufactured by
ATI Company. The programming language is ATI CAL. Because of the features of this
language and the GPU architecture we use lattices with even time part and the number of the
sites in each of the spatial directions is always multiple of four. Calculations are carried out
for lattices with the parameter NV_, which is varied from 2 up to 16, and parameter N_ has

the values changing from 8 to 32. The number of the fitting points of the dependence of the
Binder cumulant g, on # is varied for each lattice from 26 to 600.
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Fitting of Binder cumulants in SU(2) - gluodynamics on the lattice

The result of calculations of (2) is the set of the points. We put the accent on the
functional dependence which describes the Binder cumulant both in critical region and
beyond. To identify this relationship, it is necessary to apply a fitting procedure. For this
procedure we use the step functions. Let us explain, the g, cumulant has two horizontal

asymptoticses, and in the critical area cumulant changes itself step-like. The next function
(see Tab. 1) has the smallest parameter y* and the best fits for the dependence g,(f) in
the critical and beyond critical areas reads

g4(ﬁ):Al 3)

where A4,,4,,0,,p are the fitting parameters. The results of the fitting of the function (3) are

Az — Al
+ 1+ lo(ﬁo—ﬁ)xp

given in the Fig. 1 and on the Tab. 2.

Table 1
Tested fitting curves
Function Parameters
Az _ Al
vt g | oA Bop
A —+4,
1+[ﬂj Al’AzaﬂoaP
B
Al — Az
14 P-Pip +4, | A Sy p
2.30 2.32 2.34
r 1 1 [ rr &1 T T 1

-0.5

Figure 1. Binder cumulants. The cumulants are calculated on lattices with N, =4 and N,= 8, 12, 24, 28.
The higher number of nods in the lattice corresponds with the sharper step.
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Table 2
Fitting of Binder cumulants by 4, + A
1_‘_10(/”0*/3%17

Lattice Parameters Number Fitting range

X g 4 4, ﬂo P of points Brin Broax

N =2,N,=8 0.006 | —2 —0.13 1.86 | -18 | 126 1.7 | 295
N, =2,N,=12 | 0013 | -2 —0.08 1.86 |34 | 126 1.7 | 295
N.=2,N,=16 | 0013 | -2 —0.16 1.87 |43 | 126 1.7 | 295
N, =2,N,=20 | 0015 |-2 —0.11 1.87 | -81 | 126 1.7 | 295
N =2,N,=24 | 0015 |2 —0.28 1.87 | -117 | 126 1.7 | 295
N.=2,N,=28 |0.008 |-2 —0.03 1.87 | -77 | 123 1.7 | 295
N.=2,N,=32 | 0.006 |2 0.14 186 | 63 | 124 1.7 | 295
N, =4,N, =8 0.009 | -1.953 | —0.0523 | 22705 | -12 | 126 1.7 | 295
N, =4,N, =8 0.012 | -1.957 | —0.0507 | 22747 | -11 | 26 1.7 | 295
N =4N,=12 | 0025 |-198 | 0.1 2286 | —24 | 253 1.7 | 295
N.=4N,=12 | 0011 | -2 —0.04 2289 | -16 |26 1.7 | 295
N =4N,=16 | 0.029 |-2.01 —0.066 | 2287 | —30.1 | 236 1.7 | 295
N =4N,=16 | 0,013 |-1.99 | —0.05 2292 | -30.9 | 26 1.7 | 295
N =4N,=20 |0.055 | -2 —0.065 | 2291 | —48 | 246 1.7 | 295
N.=4N,=24 |01 -2.0098 | 0.044 | 2296 | -68 | 126 1.7 | 295
N.=4N,=24 | 0006 |-2.001 | 0061 |2291 |-27 |26 1.7 | 295
N =4N,=28 | 0089 |-205 |0.13 229 | -62 | 626 1.7 | 295
N.=4,N,=28 | 0012 |-1.99 8107 | 228 | 21 |26 1.7 | 295
N.=4N,=32 (012 |-1984 |02 23 -84 | 626 1.7 | 295
N.=4,N,=32 | 001 |-1988 | 0014 |227 |-28 |26 1.7 | 295
N.=4,N,=36 019 |2 —0.27 2.3 -105 | 600 228 | 231
N, =6,N,=8 0.014 | -1.65 | 0067 |24 -10.5 | 127 1.7 | 295
N =6,N,=12 10025 |-19 0.05 2.4 -17 | 127 1.7 | 295
N =6,N,=16 | 0032 | -2 —0.04 2.4 -17 | 127 1.7 | 295
N =6,N,=20 |0.092 |-2 —0.02 2.4 -44 | 126 1.7 | 295
N, =6,N,=24 | 014 |2 —0.04 2.4 =37 | 127 1.7 | 295
N, =6,N,=28 |02 -2 —0.1 24 -41 | 127 1.7 | 295
N =6N,=32 |0.04 |2 7-10" | 24 -200 | 26 1.7 |2.95
N =8N,=12 10023 |-18 —0.07 248 | -11 | 126 1.7 | 295
N =8N,=16 |0.05 |-19 0.005 249 |-13 | 126 1.7 | 295
N =8N,=20 |0.06 |-2 5-10° | 248 | -13 | 126 1.7 | 295
N =8N,=24 1014 |-2 —0.0014 | 25 34 | 127 1.7 | 295
N =8N,=28 |0.022 |-19 —0.06 249 | 26 |26 1.7 | 295
N, =8N,=32 | 0.0115 | 2 —0.02 248 | -15 |26 1.7 | 295
N, =16,N,=20 | 0,094 |-1.17 | 0017 |268 |-7 126 1.7 | 295
N, =16,N,=24 | 0.054 | -1.7 0.04 275 | -6 26 1.7 | 295
N, =16,N,=28 | 0.021 | -1.6 —0.017 267 |-17 |26 1.7 | 295
N, =16,N, =32 | 0.021 |-17 0.03 269 |23 | 126 1.7 | 295
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Fitting of Binder cumulants in SU(2) - gluodynamics on the lattice

If one knows the dependencies (3) for various lattices, it is easy to find the critical value
of the inverse critical coupling constant . [3, 4]. If one fixes a number of lattice sites in the

time direction N, and changes a number of sites in spatial directions N_, then the curves of
the dependencies g,(/) will intersect each other in one point [8, 9]. The value of £ in this
point is a critical value for the lattice with N_ = const and N_ — o . As shown above, the

result of MC calculations of g, is the set of points; therefore one should fit data to find an

intersection point of the cumulants. To locate this intersection point we use data from Tab. 3.
The detailed procedure of the calculation of intersection point is described below. Values of
the B. received for various lattices are gathered in Tab. 4. For example, the following values

of B. was calculated in Ref. [3]: 1.8800(30)N s 2.2986(6)N i 2.4265(30)
2.5115(40)N=8; the next values was calculated in Ref. [4]: 1.87380(3)N=2,

2.29850(6)N 4 2.51098(58)N _, - Listed values of /. are in good agreement with our

data (Tab. 4).

Let us consider the properties of the curve (3). First, as it seen from Tab. 2, the
parameters of the curve based on the 600 data points, are merely the same as parameters of
the curve based on the 25 data points. It leads to an important consequence: to estimate the
parameters of a curve there is no need to perform the long MC calculation. Second, the
parameter /3, coincides (to within 2 up to 3 digits) with an inverse critical coupling constant

N,=6"

B, for a corresponding lattice. Using combination of both properties it is possible to estimate

quickly a value of . on a lattice with any geometry N_ x N, ; .

It is often necessary to construct and analyze a quantity which depends on Binder
cumulants g,(fB,N_,N_) which is calculated using different N and N_. Beta-function

[10] is an example of such quantity. For lattices with identical values of N_ the Binder

cumulants should intersect in one point [8, 9] and beta-functions should self-intersect in a
corresponding point. From Fig. 1, any three of curves do not cross in one point. Moreover, the
position and the shape of curves are random variables which depend on a choice of a fitting
interval, and also depend on the data amount. The interest causes studying of beta-function in
the critical area. In this area the beta-function distorts mostly. This distortion appears due to
many points of the cumulants intersections. In practice, applying fitting procedure to the sets
of data from different lattices, one won't receive the set of cumulants, crossed in a point.

One needs to update the fitting procedure in such manner that required cumulants cross
in one point. This is very similar to a problem of calculation of inverse critical coupling on a
lattice. Considered problem is not trivial because of the condition, which is imposed on the
curves during fitting.

It is possible to simplify fitting procedure of cumulants g,, making changes into initial

objective: we will search only for a point of cumulants crossing. The easiest way to
demonstrate the given approach is to fit data by straight lines. As it is known, Binder
cumulants are linear near critical region [8, 9]. We compute such lines for the data from
critical regions of different lattices. Fitting results are in Tab.3. From this, we calculate
coordinates of all possible points of crossing of the straight lines and calculate mean
deviations for such coordinates. Received coordinates are the random values of the fitting
interval and lattice data. And next, we find a point of the intersection of the cumulants as
weighted average of coordinates considered (Tab. 4).
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Table 3
Fitting of Binder cumulants by straight lines a,B +b
Lattice Parameters Number 1;23;5

7 P b of points b B
N, =2,N_ =8 0.007 -14 25 100 1.875 | 1.885
N, =2,N, =12 | 9013 -30 56 100 1.875 | 1.885
N, =2,N,=16 | 9016 -33 61 100 1.875 | 1.885
N, =2,N,=20 | 9018 -43 79 100 1.875 | 1.885
N, =2,N,=24 | 9019 -53 98 81 1.875 | 1.883
N, =2,N,=28 | 9014 -39 71 61 1.875 | 1.881
N, =2,N,=32 | 9012 -33 61 71 1.875 | 1.882
N, =4,N,=8 | 00087 -13 29 100 2295 | 2.305
N, =4,N,=12 | 9035 221 47 207 2295 | 235
N.=4,N,=16 | 0038 -25 55 191 2295 | 233
N,=4,N,=20 | 9083 -32 71 191 2295 | 232
N.=4,N,=24 | 013 -72 165 100 2.295 | 2.305
N, =4,N,=28 | 911 -48.7 110.6 541 2295 | 2314
N.=4,N_=32 | 016 -49 111.3 541 2.2997 | 2.314
N, =4,N,=36 | g2 -65 147 600 2.8 2.30995
N,=6,N_=8 0.012 -4.1 8.7 101 2422 | 2432
N,=6,N,=12 | 9023 -4.05 8.4 101 2.422 2.432
N.=6,N_=16 | 0035 -15 35 101 2422 | 2432
N, =6,N,=20 | 911 -47 113 101 2422 | 2432
N.=6,N,=24 | 017 -48 116 101 2422 | 2432
N,=6,N,=28 | 905 -44 106 101 2422 | 2432
N.=8,N,=12 | o024 -6.5 15 100 2.507 | 2.5169
N, =8,N_ =16 | 9061 -11 26 100 2.507 | 2.5169
N.=8N_,=20 | 0.071 -20 48 100 2.507 | 2.5169
N, =8,N, =24 | 916 -35 87 100 2.507 | 2.5169

Table 4
Critical values of the inverse coupling constant and values of Binder cumulant in the critical point
N, 2 4 6 8

T

Be 1.875 | 2.301 | 2.422 | 2.508
g.(B:) | -154 | -1.5 | -1.23 | -1.27

It is easy to change fitting procedure using Tab. 4, so that appropriate cumulants will cross
in one point. We impose the condition on the Eq. (3) that this curve should pass through the
point with fixed coordinates (Tab. 4). Thus, one parameter of the curve (3) is excluded. We
choose to exclude 4,, so the modified equation (3) for lattices with N_ =4 looks:

(A4, +1.40864) x (1+ 1023008607
1+10(ﬂ0’ﬁ)><l7 .

g(B) =4~ “4)
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Fitting of Binder cumulants in SU(2) - gluodynamics on the lattice

The fitting procedure of data by the modified curves (3) leads to convergence yet not
always. The convergence depends on the excluded parameter and on the software chosen
for fitting. It can be complicated to adopt this software for any given relation. Therefore,
it is more usual to exclude some another parameter of (3).

Conclusions

Our calculations became possible due to technology of GPU computations. It is
necessary to notice that usage of GPU during lattice calculations makes possible to gather
a huge amount of the statistical data that allows studying of the Binder cumulants for a
great number of various lattices.

We have performed high-statistics calculations of the Binder cumulant in SU(2)
lattice gluodynamics. It is important that the gathered statistics allow us to construct and
analyze the Binder cumulants. Based on such analysis we propose the function for fitting
of cumulants. A few points of data (10 up to 20) are sufficient for computation of this
function. The remarkable feature of the function offered is ability to estimate quickly the
critical value of the inverse coupling constant f.. The values of f. calculated are in

good agreement with the values known in the literature [3, 4].

The procedure of determination of the intersection point of the Binder cumulants,
which are computed on lattices with different numbers of spatial sites and equal numbers
of time sites, is considered. The updated fitting procedure for determination of cumulants,
which are crossed in one point, is proposed.
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MATCHING OF STEPHANI AND DE SITTER SOLUTIONS
ON THE HYPERSURFACE OF CONSTANT TIME

The spherically symmetric solution for perfect fluid with homogeneous energy
density and inhomogeneous pressure is considered. This solution is known as Stephani
solution. It is reobtained by a mass-function method. Also, the meaning of arbitrary
functions which are present in the solution is discussed. The matching of this solution
and the de Sitter is done on a hypersurface of constant time. The matching is done with
the Lichnerowicz — Darmois conditions. The coordinates of the de Sitter solution are
taken in a general form as arbitrary functions that depend on Stephani’s time and the
radial coordinate. The matching is done both for the special cases of the flat, open, and
closed Universe and for the general case, which does not concretize the type of curvature.
The equality of energy densities and the abrupt change of pressure are observed on the
matching hypersurface. Also, restrictions for arbitrary functions (coordinates of de
Sitter solution) are found.

Keywords: perfect fluid, Stephani solution, de Sitter solution, Lichnerowicz - Darmois
conditions.

PaccmarpuBaercs cheprHyeckH CHMMETPHYHOE pelieHHe N5 HAeAJbHON JKHIKOCTH €
O/IHOPOJHOW MJIOTHOCTBI JHEPruM H HEOAHOPOJAHBIM [aBJIeHHeM. JTO pelleHHe -—
u3BecTHoe pemeHue CtedpaHuu. ITO pelmieHHe MOJy4YaeTcss HOBTOPHO ¢ MOMOIIbI0 MeTOAA
MaccoBoii ¢yHknmu. OOcyxkgaercs CMBbICA NPOU3BOJbLHBIX (yHKHHIA, KoOTOpbIe
NPUCYTCTBYIOT B pemeHud. CmuBKa 3Toro pemeHuss ¢ pemenuem jJe Currepa
BBINMOJHSAETCS N0 THNEePHNOBEPXHOCTH MOCTOSIHHOro BpemMeHH. CIIMBKAa NPOM3BOAMTCS C
nomMomb ycaopuii Jluxueposuua-Japmya. Koopaunarsl pemenus jge Currepa
BbIOHpalOTCca B 001eM BHJAE, KAK NPOHM3BOJbHbI¢ (PYHKIHH OT KOOPAMHATBHI BPEMEHH H
NPOCTPAHCTBEHHON paauaabHOi koopaAuHAaThHl pemeHus Credpanu. CluUBKa BBINOJHACTCS
IJISE YaCTHBIX CJy4aeB MJOCKOWH, 3aKpbITOii, OTKPBLITOH Bcenennoii u nas odmero ciayuas,
B KOTOPOM He KOHKpeTH3upyercs KpuBu3Ha. Ha rumepnoBepxXxHOCTH CIIMBKH
Ha0J101aI0TCS1 PaBEHCTBO NMJOTHOCTell HepPruii M CKa4yoKk AaBJeHHSA. YCTAHABJIHBAKTCH
OrpaHMYeHHUs HA MPOM3BOJIbHbIe QYHKIMH — KOOPAMHATHI pemeHus ae Currepa.

KawoudeBble cioBa: mpeanbpHas XUAKOCTh, pemeHne Credanu, pemenue ae Currepa,
ycnoBus Jluxueposuda — Jlapmya.

Posraspaerbea cdepHYHO CHMETPHYHMI PO3B'A30K s igeanbHol piaunm 3
OAHOPiAHOW TycTHHOIO eHeprii Ta HeoaHopigHuM THckoM. lledi po3B's30k - Bigomuii
po3B'sa3ok Credani. Leli po3B’si30Kk BCTAHOBJKETHCH NMOBTOPHO 32 JA0ONOMOIOK MeTOJa
MacoBoi ¢yHkunii. OOropopwerbcss 3HaAa4YeHHsA JOBiAbHUX (QYyHKNiii, ki npucyrHi y
po3B’saA3Ky. 3MMBKAa UbOro po3B'si3ky 3 po3B'sa3koM ae Cirrepa 3ailicHOeETbcA Ha
rinepnoBepxHi mocTiiinoro 4acy. 3muBKa 3AilCHIOETHCS 3a JA0NOMOIoKW YMOB
JixnepoBiua-{apmya. Koopaunatu aias po3B’s3ky ae Citrepa o0upawTbes y 3arajbHoMy
BUIJAsAAlI, fAK JOBiNbHI ¢QyHkunii Big koopamHaTH 4Yacy Ta npocTopoBoi pajiaabHoil
kKoopauHaTtu po3B’sa3Kky Credani. 3muBka 3ailicHIOETHCH IJf OKpPeMHX BHIAAKIB
NJI0CKOro, 3aKpHTOro i Bigkpurtoro BcecBiTy Ta aisi 3araJbHOro BHHAAKYy, Y SKOMY He
KOHKpeTU3yeTbcd KpuBu3Ha. Ha rinepnmoBepxHi 3mHMBKH cHocTepiralrbecst piBHiCTH
TYCTHH eHepriii Ta cTpudok TucKy. BcTaHOBIIOIOTHCA 00MeKeHHsI Ha N0BinbHI QyHKuii —
KoopauHaTH po3B’a3ky ae Cirrepa.

Kawuosi cioBa: igeanpHa pigmHa, po3B’s3ok Ctedani, po3B’sa3ok ge CiTtrepa, YMOBH
JlixuepoBuua — Jlapmya.
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Introduction

The most general class of non-static, perfect fluid solutions of Einstein’s equations that
are conformally flat is known as the “Stephani Universe” [1-5]. The spherically symmetric
Stephany solution has been examined in numerous papers. A comprehensive review is
presented in [5]. There are many papers devoted to applying this solution as star models, as
generalization of the FLRW, and as a cosmological model [5-7]. In our opinion, this solution
is attractive for the cosmological model for many reasons. Firstly, it is shear-free and
inhomogeneous. The absence of a shear makes it simple for the cosmological purpose. The
assumption of homogeneity is just a first approximation introduced to simplify Einstein’s
equations. So far this assumption has worked well, but future and modern observations can
not be precise without taking into account inhomogeneity. And due to the fact, that modern
and future observation data become more and more precise and that the smallest deviations
from the standard model can be detected with high level of accuracy soon, makes
inhomogeneous models actual. Secondly, Stephani solution has a general form in contrast to
the FLRW solution where three solutions (flat, open, closed), non-transforming into each
other, exist. Thirdly, the spatial curvature of this solution depends on time only via an
arbitrary function, this fact is discussed in [3, §].

The physical interpretation of the Stephani Universe is obscure. It is due to the many
arbitrary functions and peculiar inhomogeneity — inhomogeneity is contained in pressure
(depends on time and spatial coordinates), but density is homogeneous (depends on time
only). It needs matching in order to determine some arbitrary functions. May be the main
reason to use this solution in cosmological modeling is the fact that it is the generalization of
the FLRW solution and, in our opinion, investigation of a more general solution is promising.
The solution generalizes not only the FLRW but also the de Sitter solution [3]. In this
connection, the idea to examine the Stephani solution on the de Sitter background looks
reasonable.

In the first part of the artice the solution for perfect fluid with inhomogeneous
pressure (the Stephani solution) is reobtained with the mass-function method [9-12].
Some properties of it are discussed. In particular, we discuss a sense of the arbitrary
functions and transformation to the FLRW and to the de Sitter solutions.

In the second part, the matching of de Sitter and Stephani solutions on the hypersurface of
constant time is done. The Lichnerowicz — Darmois conditions were used. Some consequences
of the matching are discussed.

Mass-function method

The mass-function method essentially simplifies the appearance of the Einstein
equations in contrast to the standard one; it makes them easier for work. The mass-
function was introduced in [9] and discussed in [10-12]. As shown in [9], the mass-
function is invariant and in our consideration may be determined as full energy limited by
some hypersurface of constant time and coordinates. For a spherically symmetric metric:

ds® =e"*dt* —e"*VdR* —r*(R,t)d o, (1)
where do” = d0* —sin’(0)d ¢’ , the mass-function m(R, 1) is:
m(R,t) =r(R,1)(1+e® —e), ()
e’ =e " (R,t), e =e"r*(R,1), (3)
or(R,t) or(R,t)

where #(R,t) = 5 r'(R,t) = R
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

Einstein’s equations with the mass-function have the form:

' 2 170
m =rrT,

m=r’rT',

- ! . ! 7 . 12 (4)
2m' =m®" +m'Q+ 4rir'Ty,
2/ = D'+ r'Q).

Obtaining the Stephani solution

This solution was first found by Stephani [13] as a special example of a space-time
embeddable in a flat five-dimensional space, and later reobtained by Krasinski [2]. We
reobtained this solution with mass-function method.

The Stephani solution is an isotropic solution for perfect fluid with homogeneous
density p = p(¢) and inhomogeneous pressure p = p(R,t) (in spherically symmetric
consideration). The stress-energy tensor for such perfect fluid is: 750 = p(1),
T' =T} =T; =—p(R,t). The Einstein field equations become

m' =r’r'p,
. 2.
m=-r"rp,
! . [; 1~ .y (5)
2m' = m® +m'Q—4rrr'p,
2/ = D' +1'Q

Expressing the mass-function from the first equation of the set and substituting it

into the third one gives

o (1 4
B(—rd)'-i-—r’—Zr'j:O, 6)
p\3 3
from this equation the expression for @ is obtained,

®=Inr'y’, (7
where =/ (t) is an arbitrary function of integration.

The fourth equation of the set (5) gives us the expression for Q:

12
r

Q=In——r, 8
erIZ ( )
where k = k(R) - arbitrary function (prime is used for convenience).

From Eqgs. (1) and (3) the metric is obtained,

2
7

2 2 20702 gp2 2
ds :r21//2 dt” —r*(k'""dR" +do”). 9)
With the expressions (7) and (8) the mass-function is obtained:
2
m=r(l+r’y’ ———). (10)
(A+riy P )
The expression (10) with the first equation of (1.5) gives us
3 2
r 3 2 r
—=r+r —-——. 11
P Vi (11)

It is integrated in elementary functions providing the expression for 7 = (R, ¢)
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I"(R,t) — 2(ek(R)+'7(t) _ é’(t)e*k(R)*rl(t) )*1’ (12)

C)y =y (1) —%p@, (13)

and 77(¢) is an arbitrary function of integration.
Depending on the sign of £'(¢) , the expression (12) gives

r = JC -sinh(k + a), £ >0,
Fl= \/m -cosh(k + ), £ <0, (14)

-1 k
ro=e", =0,

where €’ =4/|{|-e”.

In contrast to the FLRW solution where there are three non-transforming into each
other solutions (flat, closed, open), there is the general solution here with flat, open,
closed solutions as special cases. The existence of this solution shows that the distinction
between the closed and open Universe is not required by Einstein’s theory of gravitation
as such, but is due to the very strong symmetry assumptions that are set into the models
just from the beginning. From (5) it is also possible to obtain the equation that links
density and pressure:

P r(R,1)

3 H(R,1) (15)

P(R,) =—p(t) -

The FLRW and de Sitter solutions as special cases of the Stephani solution

The Stephani solution, as mentioned above, is a generalization of the FLRW solution
and the de Sitter one. When () =0, the Stephani solution is transformed to the flat

FLRW solution. If £ (¢) # 0, the transformation occurs in such a way

. a(t)
H)=0,p()=—2,
) =0,y () =~ o
$(t)=- ! k(R)=1In cotE (16)
a*(t)’ 2’
1 R
)= :k(R) =Incoth—.
¢ 20 (R) 5
The density in the de Sitter solution is p = Lz = const. It can be obtained from Egs. (13, 16):

a,

£ =0:a(t)=e"

__ — r

St = 20 :a(t) =a, cosh o , (17)
1 ot

$(t) = 20 ra(t)=a, smh—aZ .
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Arbitrary functions and their meaning

The Stephani solution contains four arbitrary functions: k(R), £ (¢), w(¢), n(¢). Also
in our consideration, we do not set the equation of state, i.e. p(¢) is undefined. The

determination of arbitrary functions may be proving to be elusive. It is true, but our
analysis of the solution (9) shows that it is possible to understand their meaning.
The function k(R)may be chosen arbitrary because it leads to a transition to another

2
dk
coordinate system, only. The part (d_Rj dR* =dk’ in the expression (9) is just a
transformation from R to k . The coordinate transformation may be chosen in such a way

that the spatial part of the solution (9) is conformal to one of three homogeneous and
isotropic spaces,

1 .
dk* +do’ =————(dR; +sinh’ (R, )dc” ) =
sinh™(R)) (18)
1 1
=———(dR} +sin*(R,)do’ ) =—(dR> + R ’dc”).
sinz(Rz)( ? (R)de) R32( RO
Chosen 77(¢) is also referring to the coordinate transformation. Thus Eq. (9) takes the form
2
7
dS* =—="—dn* —r’(k"dR* +do?) (19)
ry
where 7 :1.
n 87]

The analysis of invariants of the spatial curvature tensor of the metric (9) shows that
the invariants depend on the arbitrary function £(¢), only. The scalar curvature tensor

and the Kretschmann scalar, for example, are
R =60(2),
R,uvlaR#VAU = 1242 (t)

Thereby spatial curvature depends on £'(¢) only. The type of space (flat, open, closed) is

(20)

determined by the sign of £(¢). So it is possible to assume that () completely

determines spatial curvature. This fact is also discussed in [3, 8].
Thus, y(¢) obtains the meaning of critical energy density. When spatial curvature is

zero, then £'(¢) =0 and from Eq. (13) we have
1
w’ (1) =320 1)

Lichnerowicz - Darmois conditions

The Lichnerowicz-Darmois matching conditions [14] are two metrics
s’ =g, .dx"'dx",
i (22)
dSZ = gwdx”dxv,
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and are said to match across some hypersurface if first and second fundamental forms of
this hypersurface are identical for the two metrics.
The first fundamental form is

dl’ =a,du'du" (i,k =1,2,3), (23)

6 H
where @, =g, &'&), &' =——.
ox'

The second fundamental form is
dl,> = b, du'du”, (24)

where b, =v, EFE, & are tangent vectors to the hypersurface and v* are normal vectors.

Matching Stephani and de Sitter solutions in general case

The matching has been done on the hypersurface of Stephani’s constant time. Time
and spatial coordinate of the de Sitter solution were chosen as arbitrary functions of the
Stephani time and the radial coordinate. Both metrics have been taken in the general form
without more precise definition of their curvature.

The Stephani metric, as mentioned above, is

-2
7

s’ = — dr* —r*(dk* +do?), (25)
ry
. or
where r =r(k,7), v =y (r), 7= Pt
T
The matching is performed on the hypersurface 7 = const. & on this hypersurface is
0 0 0O
= 01 0O 26)
" 100 1 0
0 0 0 1
Normal vectors are found from the equation
v vh =1,
L 27
v,& =0,
The normal vector has only non-zero component
v, =—. 28)
ry
First and second fundamental forms for the Stephani solution are
di, =r’dk* +r’do’, (29)
di’, = r’ydk’ + r’ydo’. (30)
The de Sitter metric is
2
r 1
ds,’ = (1 —— ]dﬂ —~ —dr’ —r’do’, (31)
a, 1 T,
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

/ 3
r.=r(k,7), t=tk,7), a, = N and A is cosmological constant. We do the same

manipulations with the de Sitter metric

~
-~

& = (32)

© o o o
o o WY,

S = o o
- o o o

According to Eq. (27) we have

!

v
Vy = (33)

AP A

t’

JAT = A
2

r

S

5 -

Vi = (34)

where primes denote derivatives for k, 4=1—
a
2

The first and the second fundamental forms for the de Sitter solution are
dl, > =(A"r’= At")dk® +r’do’, (35)
rt'(t”?A=-3r"4" r At'
dl, > == ( A7) dik* + 2

ds2
aﬂz [A—lrlLZ_Atrz A—lrgz_ AtrZ

From the equality of the first and second fundamental forms the following equations cane
be obtained

do’. (36)

rr=r’, (37)
P =Ar- A, (38)
t’ tIZA_3 ’ZA—I
rzl//:rs( 1 2% 2 )’ (39)
A ri = At

r At'

Py = ———
JA = A"

From these matching conditions the equality of energy densities on the hypersurface
7 = const follow. From Egs. (39) and (40) we have

(40)

r At' :r—szt’(t’zA—3rS'2A“), (41)
a,
and with Eq. (38)
1 '
A=— (-1 =2r24™),

a,
"o ’”sz _azz

s 2 ’

with Egs. (37) and (32) we obtain
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1
Py =—% (42)
a,
But this is de Sitter’s energy density. So, on the hypersurface 7 =const the equality of
energy densities holds

pst = pds . (43)

Matching Stephani and de Sitter solutions in the flat case

The de Sitter metric for the flat case has the form
2t

ds,’ =dt’ —a,’e (dr’ +r’dc?). (44)
After transforming its spatial part to the convenient form, it takes the form
£+2X
s’ =dt’ —a’e” (dX* +do?). (45)
The Stephani metric is
1 -
dSst2 = —zdrz —4e?* I (dR* +d o). (46)

As mentioned, ¢ =#(7,R), X = X(7,R). Below dots and primes mean derivatives with

respect to the time and the radial coordinate, respectively. For the Stephani solution the
normal vector has one non-zero component on the matching hypersurface 7 = const :

Vo =—. 47

—+X
3 Xa,e“ 48
Vo , (48)
\/X'zalzez(a‘M) e
L+X
tr a,
B a,e
v =- (49)

From the equality of the first fundamental forms two matching conditions can be obtained

2Lty

46—2(R+T) — szalze a, _t12, (50)
t
4 Zg e (X7 1) (51)
1 .

Right-hand sides of these equations are equal; from this equality we obtain

2L x

)
t?=a’e “ (X7 -D. (52)

From the equality of the second fundamental forms such two matching conditions follow:
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—+X
a JE'S)
_ a,e
4ue ARt — 4 ; (alX'e “o 4 t'], (53)
2(-Lrx)
\/X12a12e a, 412
L+X
2(R e” : 2 : 2
dye ) = — (~Xa,t” + Xa,i't' + X"a,t" -
t
2(Lrx)
\/szalze a4 (54)
2Lt x)y

—a,t’XX"+X"a’e © —X"a;t'-2t"X"),
Equality of right-hand sides of Egs. (53) and (54) together with Eq. (52) gives us

L+X 3

(X2 =DA-1XX X"+ X)+e” (X -D2(X'-X"-iX)+ (55
H-X1-XX") =0
Two possibilities exist in this case
the first is

X" =1, (56)

and the second one reads

1—-'XX —t'X"+ X' =0,

X' -X"”-iX'=0, (57)

Xt'+XX"=0.
But Eq. (57) is an incompatible system. So, we conclude that X = X(R )= R+ const , and
from Eq. (52) t = (7).

Matching Stephani and de Sitter solutions in the open case

We take the de Sitter and Stephani metrics in the open case in the form

a,’ sinh’ (IJ
a

ds,’ =dt’ - 22 (dX* +do?), 58
ds Sinh2 X ( ) ( )

. 2

(1@“ + coth(R + z‘)J

2 2 é/ 2 1 2 2
as, = 5 dr” +——— (dR” +do”), (59)
v ¢'sinh”(R+7)

where t =t(7,R), X = X(7,R).
For the Stephani solution normal vector has the only non-zero component on the
hypersurface 7z = const :
1/
—£+coth(R+r)
2¢

v, = . (60)
7%
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The non-zero components of the normal vector for the de Sitter solution are

. t
Xa, sinh—
)
V, = , (61)
. t .
\/X'zaﬂz sinh® — —¢"* sinh®> X
a,
. t
t'a, sinh—
a;
vV, =— . (62)
. t .
\/X’zaf sinh® — —¢"? sinh” X
a,
From the equality of the first fundamental forms, the conditions follow:
. t
| sinh® —
a
— :szalz —_ L (63)
¢'sinh”(R+17) sinh” X
. t
| sinh”> —
a
— =a ——~. (64)
¢'sinh”(R+7) sinh” X
From the equality of the right-hand sides of Egs. (63) and (64) we have
. t
sinh® —
a
t? =a, ——(X"? -1). (65)
* sinh®> X ( )
From the equality of the second fundamental forms, the conditions follow:
. t
a, sinh—
v _ a, y
sinh® (R + t
4 ( ) sinh? X\/X'zai2 sinh? — —¢*sinh? X (66)
a;

x(t"cosh X sinh X — aX'sinh LS cosh L),
a, a,
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

1 . .
L (a, X" sinh—— —

sinh*(R+7 B t a
¢ (R +7) \/X’Zalz sinh® — —¢"? sinh®> X g
a,

. t
a,t'’X"? cosh X sinh —
. . 4 4 a
—a,i'’X t'sinh— + X't cosh— — . & _
a, a, sinh X

t . t

a,”X" cosh—sinh® —

. t . t a a

—a,X"t"sinh— +a, X't'X'sinh — — —~ 2
a, a, sinh” X

t
+X't" cosh—).
a,

The equality of the right-hand sides of Eqgs. (66) and (67) gives

3
cosh—— (X" —1)> (X' = X" —iX") +sinh X(~X"X' = X'} +
a,
3

+cosh X (X" =1)(-1= X"*)+cosh X (X" =1)2(X"” + XX =0.

Two possibilities exist for satisfying this equation:
1) X7 =1,
or

X' -X"-iX'=0,

2 X'X'+ Xt =0,
1+ X% =0,
X"+ XXt =0.

(67)

(68)

(69)

(70)

The last set of equations is an incompatible system, so, we conclude from Egs. (69), (65)

that X = X(R)=R+const andt =¢(7).

Matching Stephani and de Sitter solutions in the closed case

Now, we take the de Sitter and Stephani metrics in a more convenient for our

purpose form

coshzi2

ds, 2> =di* —a —— 2 (dx* + do?),

& * costh( )
1¢ ?
£(+Zanh(R+r)J

» \2¢ 2 1 2 2
ds2 = . de . (dR*+do? ).
7 (cosh“(R+h)

(71)

(72)
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We match the functions ¢ =¢(7,R ), X = X(t,R)on the hypersurface ¢ = const. Dots
and primes denote derivatives with respect to time and radial coordinate, respectively.
The non-zero component for the normal vector in the Stephani case on the matching
hypersurface is
1e + tanh(R + 7)
2¢

vV, = . (73)
7%

And non-zero components for the de Sitter case are:

t
Xa, cosh—
a,
V, = , (74)
t
\/X'zaf cosh? — —¢#" cosh® X
a,
, t
t'a, cosh—
a,
vV, =— . (75)
t
\/X'zaiz cosh® — —1¢"? cosh® X
a,
From the equality of the first fundamental forms, the conditions follow
t
| cosh® —
a
- — trZ _XIZa}LZ - A , (76)
¢ cosh”(R+7) cosh™ X
t
a,’ cosh’ —
1 a,
2 = 2 b (77)
¢ cosh”(R+71) cosh™ X
From the equality of the right-hand sides of Egs. (76) and (77) we get
t
a,’ cosh® —
a
1 =——2 (X" -1 (78)
cosh® X ( )

From the equality of the second fundamental forms, the conditions follow:
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

t
a, cosh—
v % X

cosh’(R+7)
¢ ( ) cosh’ X\/X'za/l2 cosh® - — 17 cosh® X (79)

a,

x(a, X' (:osthinhL —t'sinh X cosh X),
a, a,

74 B 1
Ccosh>(R+7) \/

t

(a,t'cosh—x

t a
X"a,? cosh’ — —¢" cosh® X *
a;

A v ’ t 1yt " r t 1
xX'=t'X")+a, X cosh— ("X - X't") + X'sinh ————x
a, a, cosh™ X (80)

t t
x(X"a,’ cosh’ ——1" cosh” X) +t'X"*a, cosh— tanh X —
a; a;

. t
X" sinh—).
a,

The equality of the right-hand sides of Egs. (79) and (80) gives

cosh X(t'X'+ X'X")+sinh X(X? =D+ X"7? - X" - XXt') +

TN AP (81
+X'sinh— (X" =12+ X'-1)=0.
a,
Two possibilities exist to satisfy this equation:
1y
X" =1, (82)
or
2)
X'+ X'"X' =0,
1+ X7 -X" - XXt'=0, (83)
(+X'-1=0.

This set of equations is incompatible, so, we conclude from Egs. (82) and (78) that
X=X(R)=R+constand t = (7).

Conclusions

Matching conditions for the Stephani and the de Sitter solutions on hypersurface
7 =const in the spherically symmetric case have been obtained (7 is a time coordinate
of the Stephani solution). The coordinates of the de Sitter solution were taken in the
general form as arbitrary functions depending on the Stephani’s time and radial
coordinate. Matching was done both for special cases (flat, open, closed) and for the
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general case that does not concretize the type of curvature. From the matching
conditions the equality of densities on the matching hypersurface has been obtained.
From Eq. (15) we see that there is an abrupt change of pressure. Also it was obtained
that de Sitter radial coordinate is different from the Stephani one on some shift and de
Sitter time is an arbitrary function depending on Stephani’s time.
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ONE-VELOCITY AND ONE-TEMPERATURE HYDRODYNAMICS OF PLASMA

The hydrodynamics of fully ionized plasma where the relaxation of the component temperatures
and velocities is finished is investigated on the basis of the Landau Kkinetic equation. The reduced
description parameters of the system are the component particle densities, the macroscopic velocity and
the temperature of the system. The hydrodynamics is built starting from the Bogolyubov functional
hypothesis. The consideration is based on a perturbation theory in small gradients of the reduced
description parameters. The component distribution functions are found in the perturbation theory with
accuracy up to the first order in the gradients. Hydrodynamic equations for the reduced description
parameters are built taking into account dissipative processes. The obtained integral equations are solved
by expansion in the Sonine polynomial series with the additional use of the electron-to-ion mass ratio
smallness. The kinetic coefficients of the system are calculated taking into account smallness of the mass
ratio. These results of the work are not only important themselves, but can be a basis for the investigation
of relaxation phenomena at their final stage as a main approximation. The obtained hydrodynamic
equations can be used for the hydrodynamic mode investigation.

Keywords: fully ionized election-ion plasma, Landau kinetic equation, distribution functions,
hydrodynamic equations, kinetic coefficients.

Ha ocHoBe knHeTHyeckoro ypaBHeHusi JlaHgay wu3ydyaercsi THAPOAMHAMHKA IIOJHOCTBHIO
HOHU3MPOBAHHOI IVIa3MbI B CJIyYae 3aBepUICHHOI peaKkcaliy CKOPOCTeil M TeMIepaTyp KOMIIOHEHT.
IMapameTpamM# COKPALEHHOT0 ONMMCAHHUSI CHUCTEMBI SIBJSIOTCH TUIOTHOCTH YHCJIA YACTHI] KOMIOHEHT,
MaKpOCKONHMYeCKasi CKOPOCTb W TeMIepaTypa cHcTeMbl. ['HIpOAMHAMHKA CTPOMTCSI MCXOASl M3
(ynxnuonanbHoii rumoresnl Boromo6osa. PaccMoTpenmne 0asupyercsi Ha TeOpHH BO3MYLIEHMii 1O
MaJbIM TIpaJHeHTaM MNapaMeTPOB COKPAILeHHOro omnucaHus. ®YyHKUUH pacnpeje/leHHs] KOMIIOHEHT
HILYTCSl B TEOPUH BO3MYIIEHHIT ¢ TOUHOCTBIO /10 YJEHOB MepBOro nopsiaika mo rpagueHtam. IlocrpoeHst
YPaBHeHHS] THAPOAMHAMHMKHM /UIS NApaMeTPOB COKPAIIEHHOT0 OMHCAHUS C y4YeTOM NAMCCHNATHBHBIX
npoueccoB. [losryueHHbIe MHTerpajibHble YPABHEHHs PelIAIOTCH Pa3JioiKeHHeM B Psii M0 MOJIMHOMAM
CoHnHA ¢ JOMOJHHUTEJbHBIM Y4eTOM MAJIOCTH OTHOINEHHMSI Macc JJeKTpoHa M moHa. Kunermueckme
K03 PUIHEHTHI CHCTeMbI BBIYHCIEHBI ¢ YI€TOM MAJIOCTH OTHOIIEeHHs1 Macc. Pe3yabraTsl pagoTnl He
TOJIbKO BaKHBI CaMH 10 cefe, HO TaKiKe MOIYT ObITh OCHOBOW /sl MCC/IEOBAHUS Pe/laKCAlMOHHBIX
sIBJIeHMii BOJIM3HM 3aBeplIeHUs peJIaKCAllMM KaK TIyaBHoe npuOamkenue. IlosydeHHble ypaBHeHHs
THAPOAHHAMHKH MOTYT OBbITh HCIOJIb30BAHBI 1151 H3YYeHUs] THAPOAMHAMHYECKHX MO/l CHCTEMBbI.

KnioueBble cji0Ba: TMONHOCTBIO HOHU3MPOBAHHAs OJJIEKTPOH-WOHHAS IUIa3Ma, KHHETHYECKOE
ypaBHeHue Jlannay, GyHKINH pacrpeseneHus, ypaBHeHUs THAPOANHAMHUKHI, KHHETHYeCKUe KO QUIINCHTHI.

Ha ocHoBi kiHernuyHoro piBHaHHs Jlanjgay BuB4Yae€Thesl TiipoguMHaMika IOBHICTIO iOHi30BaHOI
IUIA3MH Yy BHIIAJKY 3aBeplLICHOI pesiakcalii MIBUAKOCTeH Ta Temmeparyp kommoHeHT. Ilapamerpamm
CKOPOY€HOI0 ONMCY CHCTEMH € TYCTHHH KiJTbKOCTI YaCTHHOK KOMIIOHEHT, MAKPOCKOMIYHA IBHAKICTH Ta
Temreparypa cuctemu. I'itponnHamika 6ynyerbess Buxoasaum 3 ¢pyHKLioHaIbLHOL rinore3u boroarodosa.
Po3risig 6a3yerbest Ha Teopii 30ypeHb 32 MaJIMMM IPajlieHTaMH apaMeTpiB CKOpo4eHoro onucy. yHkuii
PO3MOIiTy KOMIIOHEHT WHIYKATHCS y Teopili 30ypeHb 3 TOYHICTIO 10 4/IeHiB NepUIOro MOPsSAKYy IO
rpajgieHTam. I1oGynoBaHo piBHSIHHSA IAPOAUHAMIKH 1J151 IapaMeTPiB CKOPOYEHOT0 ONHUCY 3 YPAXYBAHHAM
AUCHNATUBHUX mpoueciB. OTpuMaHi iHTerpanbHi pPiBHAHHSA PO3B’SI3YIOTHCH PO3BHHEHHSIM B Psi MO
noixinomam CoHiHA 3 J0AATKOBHM YPaXyBaHHSIM MAaJIOCTi BiJHOIIEHHS MAC eJEKTPOHA Ta ioHa.
Kinernuni koedinieHTH cucTeMH NOPaxoBaHO 3 ypaXyBaHHSIM MAaJIOCTi BinHomeHHs Mac. Pesyabratn
po0oTH BakJIMBi He Juime caMi Mo co0i, ajle TakoK MOKYTb OyTH BHKOPHUCTAHI Il AOCJIZKeHHS
pejakcauiiHuX sBMI 1M00JM3Y 3aBeplLIeHHs pejiaKkcalil K roJioBHe Ha0u:keHHsl. OTpUMaHi PiBHIHHA
riIpoAMHAMIKH MOKYTh O0yTH BUKOPUCTAHI /181 OTPMMAHHSA riIpoAMHAMIYHIX MO/ CUCTEMH.

KiouoBi cioBa: TOBHICTIO 10HI30BaHa €NEKTPOH-IOHHA IUTa3Ma, KiHeTWYHE piBHAHHS JlaHmay,
¢yHKLiT po3moiny, piBHSHHS I'iIpOJUHAMIKH, KIHETHYHI KOS(IMieHTH.

© V. N. Gorev, A. 1. Sokolovsky, 2013
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Introduction

In his famous work [1] Landau derived a kinetic equation for completely ionized gas
with Coulomb interaction, which is widely used in the kinetic theory of plasma. On the
basis of this equation he also studied the temperature relaxation in plasma. The problem
of the relaxation times in the spatial uniform case was investigated by many authors (see,
for example [2-4]). Present work is concerned with the non-homogenous case where the
relaxation of the component temperatures and velocities is finished. The problem of the
one-velocity and one-temperature hydrodynamics of two-component systems (a usual
hydrodynamics) is not new [5-7], but it was usually investigated on the basis of the
Boltzmann equation for uncharged particles.

The aim of the present work is to build usual hydrodynamics of plasma on the basis
of the Landau kinetic equation and to obtain the component distribution functions and
kinetic coefficients of the system. The mentioned results, besides being important
themselves, obviously can be considered as the leading order approximation in the case of
small differences of the component velocities and temperatures.

The article is organized as follows. First, the Landau kinetic equation is written.
Then reduced description parameters of the system are introduced, and the component
distribution functions are obtained in the homogenous case. Then hydrodynamic
equations for the reduced description parameters are built, and the distribution functions
in the non-homogenous case are calculated. Using these distributions, the kinetic
coefficients of the system are found.

Basic equations of the theory
The well-known Landau kinetic equation for fully ionized electron-ion plasma is written

O (6D - _hw-f I ( f(x t))
ap ? ’

ot m, OX,
0 2 Moy O p_p
| (f)==) —|27z(ee ) LI f —2—f —2!D |———|d°p
ap( ) gapn|: 7[( a b) _[{ ap apll bp apl} nl(ma mb p (1)
where
D, (u)=(uf &, —uu)/|uf )

Here f, (X,t) is distribution function of the a -th component of the plasma (a, b, c,...
=eg,i). It is normalized by relation

J fp(e00’p=n,(x0) 3)
where n,(X,t) is number of particle number density of the a -th component. The Landau

equation is a model one but it adequately describes the role of the Coulomb interaction in
the system at long distances. Therefore, it is widely used in the plasma theory.

As is known [5], the reduced description parameters in the one-velocity and one-
temperature hydrodynamics are the particle number densities of the components n_(X,t),

the temperature T(X,t) and the velocity v,(X,t) of the system. By definition, these
parameters are introduced as follows:

ﬂnzzjfappnde:Unp (pEneme+nimi)’

3 1
g=ZI fapgapd3p=5nT+Epu2 (n=n,+n,) 4)
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where 7, and & are the total momentum and the energy densities of the system,
respectively (&,, = p*/2m, ).
The investigation is based on the functional hypothesis [5], which can be written as
oo (6 t) = fa (x.60) 5)
where the reduced description parameters are denoted as &,: & =T, =v,, §,=n,

(#=0,n,a). In (5) 7, is a time which is much longer than the subsystem velocity and

temperature relaxation times. The dependence of the reduced description parameters on
the coordinates is supposed to be weak, so the gradients of the reduced description
parameters are assumed to be small,

A
0K, .0, J (g=D). ©)

Parameter ¢ is estimated as g =1./L where |, is the mean free path, L is characteristic

length of inhomogeneities in the system. In what follows, the contribution of the order g°

to a quantity A is denoted by A® .
According to the functional hypothesis (5), hydrodynamic equations have the structure

95, (X,1)
”T =L, (x, f(&1) (7
where functional L, (X, f ) can be found from the kinetic equation (1) and definitions (4). Then

equation (1) is rewritten in view of (5) and (6) as the equation for the functional f (X, ¢ )

Sf of (X,
J‘d3r ap Xé I(X',f(f)):_&M+|ap(f(X,§))- ®)

m OX,

a

This equatlon should be solved with additional conditions

> [ fe6 )P’ p=0,003mn, 00,  [f,06&d’p=n,0,

[ £ 066128 P=2T (O L 1,00+ 0()° Xm0, (9 ©)

that follow from definitions (3), (4).
In order to realize the reduced description method, one should calculate the

functional f (x,é) from equations (8) and (9). These equations are obviously solvable in

a perturbation theory in the gradients of the reduced description parameters.

Hydrodynamic equations

Hydrodynamic equations (7) are obtained from conservation laws following from
the kinetic equation (1) and the definitions (4)
on, 1 on, or, ot os 0,

= — — :——nl —_— =,
ot m, ox ot o~ ot ox (10)

Here the total energy and momentum fluxes in the system q,, t,, and momentum density

of the a -th component 7,

=Za‘,jd3p8ap%fap, tn.=Za:Id3ppn%fapa 7y =[d’ppif,,. (11)

a

are introduced ( 7, = 7, + 7;, ).
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To build hydrodynamic equations with taking into account dissipative processes the
solution of equations (8), (9) should be found in the form of a series up to the first order
in the gradients of the parameters &,(X) by using an iterative procedure

fp(x.&)= 1)+ 1) +0(g%). (12)
Equation (8) shows that the distribution functions in the leading approximation
coincide with the Maxwell ones

0 n ﬂ3/2
f()_wap Mo 2 Wapzmexf’(_ﬂgap) (B=1/T) (13)

because for collision integral (1) the relation
lp (W) =0 (14)

is true.
The fluxes in the lab reference system are connected with ones in the accompanying
reference system (ARS) by relations

1
qn :qr? +tr?IUI +(‘90 +Ep02)un ’ tnI =t§| +pUnUI > ”an :ﬂ-;n + manaUn (15)

where quantities taken in the ARS have superscript 0. From (4), (11)-(13), (15) it can be
obtained that the hydrodynamic equations with contributions up to the second order in
gradients are given by relations

on, _ ono, 1 omy" ov,  ou, laonT 1aty"
at ox,  m, ox, ot Yox,£ pox. p ox
0 o 0 oo
ﬂ__vnﬂ_%'[‘ Yn _iq__itﬁl(l)i+lz 1 o7 ) (16)
ot ox, 3 ox, 3n ox, 3n ox, nSgm, ox,
Here we take into account that for the considered system
&= % nT, t”=nTs,, q”=0, z2”=0, 7z°=0. (17)

o(1)

an

o(l) o(D)

In equations (16) fluxes of mass 7. momentumt ", energy ¢, describe dissipative

processes in the system.

According to the idea of the rotational invariance, the distribution functions of the
first order in gradients in the ARS have the structure

f(l): ap mu|:pnzAaNb( ap)a%"_pnAa (ﬂgap)ﬂ—l_

n axn

0%,
Scalar functions A™ ( Be,) A: (Be,), A (Be,) can be found from integral equations

P, { Ls, —i} =2 [d*p’Ky, (P, D) DI A (Beiy )

+(P P, — n.p>Aa( )a”} : (18)
p—>p-myv

aMa, P

n
3 3 A7 ’ r AT
pnmﬁ{ﬂgap_z_%ma}:_gj‘d pKab(p’p)pnAa (ﬂgbp')’
ﬁ {pl Pn— nlp } ZJ‘dSD'K p.p (pl pn_ plz)Ag)(ﬂgbp’)' (19)
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Kernel K(p,p’) of these equations is defined through the collision integral (1) by the
formulas

: : n_ Olap(F)

Ko (P P)Woy =My (P, P") Wy My (P ") =—2—

20
5 fbp’ fepr ( )

Additional conditions (9) give the following restrictions on the solution of the integral
equations (19)

Id pw, p Aa ﬂgap) 5 .[d pw, p A:‘b ﬁgap): > (21)

which pr0V1de the uniqueness of the solutlon.
The solution of integral equations (19) will be found in the form of the expansions in
the Sonine polynomials [8]

Nb(ﬂgap) Zgz’;‘sbsslz(ﬁgap) (ﬂgap) Zgassyz(ﬂgap)’

A (B, ) = Zgasss”(ﬂeap)- (22)

The Sonine polynomials S’ ( ) are defined by the relation

1 d"
Sa =_ —X ya+n , 23
n()nex dx”(ex ) (23)
and have the property of orthogonality
L ves ; I(n+a+1)
}[e X“S¢ (x)Sn,(x)dx=T5m.. (24)

The Sonine polynomials are useful in the next calculation because of the equality
o 2n, T T(n+a+1
P 287 (e )55 (o) = — D g
which follows from (24).
Distribution function (18) allows calculating the first order in gradients contributions
to fluxes (dissipative fluxes) in the ARS:

70 on 6T 0 on, oT
(1) ZAab by aX qn(l) — Dg
ov, ovuv, 20v
tO(l) n oy L _Z7"m 5 ,
" 77( ox  ox, 30x, "'j (25)

where kinetic coefficients
T
A-l _mnTgaO’ Ba:manaT ga0=

5 5
Cangzgnb(gt?oa_gtﬁa)’ DZETzzna(glo_g;)’

2 v
n=-T*y nmgy,. (26)
a
are introduced. Here# is shear viscosity but for other kinetic coefficients there are

several standard notations (see, for example, [5 - 7]).

As seen, the usage of the Sonine polynomials is rather convenient, because the
momentum density and the momentum flux are expressed in terms of only one
polynomial, and the energy flux is expressed in terms of only two polynomials.
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Calculation of the kinetic coefficients

Substituting expansions (22) in integral equations (19), multiplying by the Sonine
polynomials and integrating over momentum give an infinite set of equations for
coefficients g}, gL, g%. For their approximate calculation we should artificially
truncate the number of polynomials in (22) (see, for example [10]) to obtain a finite set
equations for the coefficients g, gl., g2 . From (26) it is evident that at least A™® and
Al should be found in the two-polynomial approximation, and A’ — in the one-
polynomial one.

From (19), (22) the following set of the truncated equations for the coefficients gaNsb

(s=0,1), g (s=0,1), g, is obtained

3nmT
z ZGas,bs’ggs’ = _Yas > Z es, bs' 9 l;\‘se = _—550 >
s=0,1 b s=0,l b P
3n,m.T , 3n.m.T
ZGes,bs’gbl\;l’ = —550 ’ z is, bs' 9 I;\ls —550 ’
$=0,l b P $=0,1 b P
3nmT v
ZGis,bs’gb’\?’e = — 550 ’ Z gbOHaO,bO = _lonamaT (27)
§=0,1 b P b
where
Yo =Y, =30N(M,—m,)/ p, Y, =-15n/2. (28)

Equations (27) contain the matrixes G, ,,,, H, ,, given by formulas

Gas,bs’ E{ an:/Z (ﬂgap) 83/2 (ﬂgbp )}
as bs’ {(pl pn nI p2 /3)855/2 (ﬂgap)’(pl pn - 5n| p2 /3)855’/2 (ﬁgbp )}ab (29)

which contain integral brackets defined by the relation

(9,1} = [d* pd* p'g (p)wi, Koy (P P)N(P). (30)
Using (22), relations (21) take the form

LM =0, 2 MmN, 05 =0 (31)

and must be used as additional conditions to equations (27).
In order to simplify the obtained results, we may take into account that the electron-

to-ion mass ratio is small o =.,/m, / m, < 1. Using (1), (20), (29)-(31), we obtain the
coefficients g:s" (s=0,1), gi (s=0,1), g, in a perturbation theory in &
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3

22 (\/Ene + zzni)

V2n, +72°n,
2% 7°n, (\/Ene + zzni)
- n, (\/Ene + 7zzni)
9io = 52 52,2 2
2% 7%, (\/Ene+z ni)
3(5\/§ne +52°n, —4zzne)
2*z'*n, (\/Ene + zzni)

3T (4420, +132°n;)

1+0(s), gl = 2+0(0),

geTo =-3

Ao’ +O(0'3),

0 = /10'+O(0'2),

n
g = A+0(0), Gy =0 =——0"0u ,
LT zznine(zzni +\/5ne) () ’ o, '
9T n n
Oer = A+0(0), gy =-—a’gy, gh =——o gy
! 27n, (2°n, +/2n, ) (@) o “on "
9T n
g =— Ao +0(c’), 9\ =—-—=0o’g",
1 2°7%n, (22ni +\/§ne) ( ) 1 n, 1
v _ 5 A+0 h— 5 A 0] z
Jeo =~ +0(0), o =", *0F (0 ) (32)

2} (ne +\/§nizz)

where the notation
Tl/2
e‘L(zm,)"”
is introduced. As seen from (25), (26), the obtained expressions are important for
calculation of the kinetic coefficients.
According to the standart definition of kinetic coefficients for the two-component
systems [6, 7], we can introduce notations

t3|<u>:_,7£%+%_25 %J_%%

(33)

b

ax  ox 3 " ox, X,
250 = olnT _mDﬂdn’ 250 = T olnT _n’mm, D.d. .
OX, P oX, P
aT & 51-0°
oW — e 4T =+= P
SR o, [ 0. "2 m [ (34)

0

where quantity d, is defined by formula (with taking into account, that 72" + 72" =0).

in

d - n.n(m —m,)dInT e (olnn,  , dlnn, |
" pn X, on o ox, OX

Here 77, ¢ are shear and bulk viscosity, D, , D, are thermal diffusion and diffusion

coefficients, x is thermal conductivity, & is an additional kinetic coefficient.

(35)

n
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Using definitions (34), (35) and formulas (25), (26), (32), we obtain the following
expressions for the kinetic coefficients

45n,m.T?
T Py
5 o 372 (4420, +132°n;)
) ¢ 29/2nz“(ni +\/§zzne)
- 750,72
25’2(4\/§ne +1322ni)

/1+O(0),

/1+O(0),

_5m.T?

2°7*

/1+O(G), Ao +0(c’), ¢=0,

~ 45nn,T?
29/2nemen(zzni +\/§ne)

which define dissipative fluxes in the system.

/1+O(O'), (36)

Conclusions

The hydrodynamics of fully ionized two-component plasma with equal component
temperatures and macroscopic component velocities has been investigated taking into
account that the electron-to-ion mass ratio is small. The distribution functions of the
plasma components are found up to the first order in gradients of hydrodynamic
variables. The kinetic coefficients of the system have been calculated.

The considered hydrodynamic states are the states in which the relaxation of the
component velocities and temperatures is finished. The obtained results are not only
important themselves, but they are also very important for the relaxation processes
investigation at the end of relaxation. In the last situation the results obtained in the
present paper give the leading order approximation for the case of small differences of
component temperatures and velocities. The developed here hydrodynamics will be used
in another paper for investigation of the plasma modes taking into account the relaxation.

References

1. Landau L.D. Kinetic equation in the Coulomb interaction case / L.D. Landau // JETP. —
1937.-V.7.—P.203-209 (in Russian).

2. Ishimaru S. Basic Principles of Plasma Physics/ S. Ishimaru, London, Benjamin, 1973. —324 p.

3. Alexandrov A.F. Fundamentals of plasma electrodynamics /A. F. Alexandrov, L. S. Bog-
dankevich, A.A. Rukhadze, Moscow, Vyshchaya Shkola, 1988, 424 p. (in Russian).

4. Bobylev A.V. Relaxation of two-temperature plasma /A. V. Bobylev, 1. F. Potapenko,
P.H. Sakanaka // Phys. Rev. E. — 1997. — V.56, No.2. — P. 2081-2093.

5. AKkhiezer A.l. Methods of Statistical Physics/ A.l. Akhiezer, S. V. Peletminsky, Oxford,
Pergamon Press, 1981. — 376 p.

6. Silin V.P. Introduction to the kinetic theory of gases / V.P. Silin, Moscow, 1998, 339 p.
(in Russian).

7. Ferziger J.H. Mathematical theory of transport processes in gases / J.H. Ferziger, H.G Kaper,
North Holland Publishing, Amsterdam, 1972. — 579 p.

8. Lifshitz E.M. Physical Kinetics/ E.M. Lifshitz, L. P. Pitaevsky, Oxford, Pergamon Press,
1981. - 452 p.

Received 13.07.2013

46



ISSN 9125 0912. BicHuk [JHinponeTpoBcbKoro yHiBepcuteTty. Cepia «®i3uka. PagioenektpoHika». Ne2. Bun. 20. T.21, 2013
Visnyk Dnipropetrovskogo universytetu. Fizyka. Radioelectronika. No 2. Issue 20. V. 21, 2013

UDC 535.14:537.8
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DYNAMICS OF ELECTROMAGNETIC FIELD AND ITS CORRELATIONS IN
A MEDIUM CONSISTING OF TWO-LEVEL EMITTERS

Kinetics of electromagnetic field in a medium of motionless emitters is considered on the basis of
reduced description method with using as its parameters the average value of the transversal
electromagnetic field, its binary correlations, and energy density of the emitter subsystem. Material
equations for such a medium are obtained. Electromagnetic waves existing in it are considered. Equilibrium
correlations of the field and their connection with the material equations are investigated. The concept of
binary correlation waves existing in a non-uniform case is developed. The description for waves of binary
correlations with using the field mode correlations and compact designations are proposed. Four types of
correlation modes in the equilibrium medium of emitters are found. Two of them correspond to a damped
oscillation process and other two ones correspond to decaying waves. The connection between the energy
density of the emitters and field correlations is shown. Modes of the non-equilibrium medium coupled to
field correlation modes are investigated near the equilibrium. The phenomenon of creation of field
correlations (correlation wave emission) in the process of emitter medium evolution is predicted.

Keywords: medium of emitters, transversal electromagnetic field, correlation modes, decaying waves
of correlations, nonequilibrium medium, coupled oscillations.

PaccMoTpeHa KHHeTHKa 3J1eKTPOMATHHTHOIO MOJsi B cpefe, 00pa30oBaHHON HeNMOABH:KHBIMH
JABYXYPOBHEBbIMH HM3/Iy4aTe/IsiIMH, HA OCHOBe MeTOJe COKPAIIEHHOr0 ONMMCAHMSA € HCNO/1b30BAHHEM B
Ka4ecTBe ero NapaMeTpoB CPeJHUX 3HAYCHHUN NONEePevYHOro 31eKTPOMArHUTHOIO 110151, ero OMHAPHBIX
KOpPpeJsiiHii ¥ IJIOTHOCTH JHEPIUH NoACHCcTeMbl H3ay4areseii. [loayyeHnl MaTepuaibHble YPABHEHHA
IJis Takoii cpeabl. PaccMOTpeHBI 3JIeKTPOMATHHTHbIE BOJIHBI B Heil. HMcciegoBaHbl paBHOBeCHBIE
KOPpeJsiMH 10/ H UX CBA3b ¢ MATEPHAJbLHBIMY YPaBHeHUsIMH. Pa3BuTa KOHLeNMs BOJIH OMHAPHBIX
KOppeJsiiuii, CyIIecTBYIOIMX B HEOAHOPOAHOM ciydae. IIpensoskeHbl onucaHue BOJIH OMHAPHBIX
KOppeJsiiuii ¢ MOMOIBLI0 KOppeJsinuii MoA MoJisi 1 KoMnakTHasi ¢popma 3anucu. Haiizeno yernipe
THIIA MO/l KOppe/siliMii B PAaBHOBECHON cpefie W3 m3Jy4arteseii. [Ba U3 HUX OTBeYalOT 3aTyxalouieMmy
KoJIe0aTeJJbHOMY Mpolieccy, ellie ABa — 3aTyxalomuM BoJjHaM. ITokazana cBsSI3b NMJIOTHOCTH HEPIHH
H3JIy4aTeseii ¢ KoppeasuusiMu moJjs. M3ydeHbl MOl CBSI3AHHBIX KOJIe0aHN HepaBHOBECHOIl cpebl U
KoppeJasuuil mojs BOau3M paBHoBecus. IIpencka3ano siBjieHHe BO3HHKHOBEHHMSl KOPpPeJAlMil 1moJis
(M3J1yyeHHs1 BOJIH KOppeJsiiuii) Npu IBOJIIOLUM CPeAbl U3 U3JIy4yaTeJsiei.

KarodeBble coBa: cpefa U3 u3mydaTeneil, monepeyHoe 3MeKTPOMArHUTHOE T10J1€, MOl KOPPEAIHH,
3aTyXalollhe BOJIHBI KOPPEIAINii, HEpaBHOBECHAS CPEZIA, CBS3aHHbBIE KOJIEOaHMHs.

Po3rnsinyTo KiHeTHKY e/IeKTPOMArHITHOIO MOJA B cepeJOBHINi, sike YTBOpeHe HepPyXOMHMH
JABOPiBHEBMMH BHIIPOMiHIOBAYaMH, HA OCHOBi MeTOy CKOPOYEHOI0 ONHCY 3 BUKOPUCTAHHAM Yy SIKOCTI
iHoro mapameTpiB cepeAHiX 3HAYeHb MONEPEYHOI0 €JeKTPOMATrHITHOTO TOJIsl, HOro OiHapHUX
KopeJisiliii i rycTunu eHeprii miacucremu BunmpomiHoBaviB. OTpuMaHo MaTepiajbHi piBHSIHHA IS
TaKOro cepeloBHINA. Po3risiHyTo eleKTpOoMArHiTHI XBWIIi B HboMY. JlociiakeHO piBHOBAaKHI Kopesauil
nojiss Ta ix 3B’A30K i3 MarepiaJbHMMH piBHAHHAMH. PO3BMHYTO KOHUeNUil0 XBWIbL OiHAPHHX
KopeJisiliii, 10 iCHYI0OTh Y HEOHOPIAHOMY BHIIAKY. 3aPONOHOBAHO ONMMC XBUWJIb OiHAPHUX KOpeasuii
3a IONOMOroI0 KopeJsimiii Mo Mojsi Ta KOMNAKTHY ¢opmy 3amucy. 3HaliieHO YOTHPH THIH MOJ
KOpeJisiliii y piBHOBa:KHOMY cepeJOBHUILI 3 BUIPOMiHIOBaYiB. 3HAl1eHO YOTUPH TUIIM MO/ KOpeJsilii y
PiBHOBa)KHOMY cepe/loBHIIi 3 BUNIPOMiHIOBayiB. /IBa 3 HUX BiINOBiIal0Th 3racaro4yoMy KOJIHMBAJIBLHOMY
npoiecy, a e JABa THIIM MOJ Kopeisuii — 3racarouuM xBujiaM. [loka3aHo 3B’A30K I'yCTHHHM eHeprii
BUNPOMiHIOBa4iB i3 KopesuisMu noJisi. BuBueno 3B’s13aHi KOJIMBAHHS HEPiBHOBAKHOIO cepeloOBUINA
Ta KopeJsinii mons mo6um3y Bin piBHoBaru. IlependauyeHo siBule BMHUKHEHHSI KOpeJsniil moss
(BMIPOMiHIOBAHHS XBUJIb KOpeIflliil) y npoueci eBo/onii cepeoBHINa 3 BHIIPOMiHIOBaYiB.

KmrouoBi ciioBa: cepemoBuile 3 BHIPOMIHIOBAYiB, IONEPEYHE ENEKTPOMArHITHE TII0Jie, MOAM
KOpeJIsILiii, 3racaioun XBHJII KOPEJALii, HEepiBHOBaYKHE CEPEeIOBHILIE, 3B 13aHi KOJIMBAHHSL.

© S. F. Lyagushyn, Yu. M. Salyuk, A. I. Sokolovsky, 2013
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Introduction

The necessity of taking into account binary field correlations as additional
independent variables together with the average field was pointed out for the first time in
the paper [1]. This idea was put into life in the paper [2] where the field kinetics in the
equilibrium entirely ionized plasma was investigated. In that paper the idea of field
correlation waves existing was also expressed. In the paper [3] the kinetics of
electromagnetic field in non-equilibrium plasma at the hydrodynamic stage of evolution
was studied. In the approximation of a small correlation radius coupled oscillations of
field correlations and hydrodynamic variables of plasma were investigated.

In our paper [4] the kinetics of electromagnetic field in a medium consisting of
motionless two-level emitters distributed in the space with the density Nn(X) was

developed. The interaction between emitters and field was supposed to be weak (4 is its
weakness parameter). The directions of dipole moments of emitters were considered to be
equiprobable. Non-equilibrium field state was described by its average value
B, (x,t)=¢&,(x,t), E (x,t)=¢&, (xt)and binary correlations (&X,&X),  defined for
arbitrary local quantities a(x), b(x) by the general formula

(a",b"), =Sp p(H){&(x),b(x)} /2 ~Sp pHAX)Sp p(HD(X) (1)
(4(x) and 6(X) are the quantity operators, p(t) - a statistical operator of the system). A state
of the non-equilibrium system of emitters was described using their energy density £(X,t).

The aim of the present paper is to investigate the dynamics of such a system near the
equilibrium in terms of the average field and its correlations. Preliminary results of the
investigation were presented at the conference SPMTA-2012 [5].

The proposed research is relevant to the investigation of properties of emitted
electromagnetic field in a superradiant state described by the Dicke type model. The
quantum properties of the field are described by a binary and more complicated
correlation functions. Our correlation functions (1) are one-to-one correspondent to ones
discussed in quantum optics.

Hereafter the review of the theory developed in our paper [4] is given. The
development of the theory of transversal modes of electromagnetic field started in the
paper [6] is continued. On such a basis equilibrium correlations of electromagnetic field
are calculated. Then the investigation of field correlation modes in the equilibrium
medium of emitters is expounded. The last section is devoted to the discussion of coupled
electromagnetic field correlations and non-equilibrium emitter medium. Presented here
theory is the further development of our research in [6].

Basic equations of the theory

We restrict ourselves with considering transversal field dynamics. Average

electromagnetic field obeys the usual Maxwell equations
0,B,(x,t) =—crot, E(x,t), 0,E,(X,t)=crot, B(x,t)—4xJ,(X,1),
divB(x,t)=0, div E(X,t) =47mp(X,t) ()

where J,(X,t) and p(X,t) are current and charge densities. The material equation
connecting the current density and field with accuracy of order A* takes the form

J,(x,t)= J'd Xo(x—X,e(X1)E, (X, 1)+ cId X p(x=X,e(X,1)Z,(X,1) 3)

where Z_(X)=rot, B(X).
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Fourier components 0, (&), y, (&) of the included kernels o(X,&), y(X,&) (they

are supposed to be known functions) are non-equilibrium generalization of the
conductivity and magnetic susceptibility of the medium with taking into account spatial

dispersion. In the developed theory the quantities o, (&), , (&) are of A° order and do
not depend linearly on the energy density & . Equilibrium values of material coefficients
are given by formulas o, =0, (), . = 1. (&™) /[1-4my, (&*)] since the definition
B, =uH,, 1 =1+4xy, (4, is magnetic permeability) is usually applied.

The Maxwell equations can be written more compactly in the form

atgin(xﬂt) = iZJ.dX'Cin,i’l (X - X’)é:i’l (ert) - 477'-"]in (X’t) (4)

where we use the notations: f,n(x) = én(x) , fzn(x) = Ién(x) , 4,(X)=0, J,.(X)=J,(X).
Then the material equation (3) takes the form

‘]in (Xat) = Zj'd 3X'O-in,i'l (X - X',S(X))éq (X"t) . (5)

Non-zero matrix components C;(X—X'), o;(X—X',&), according to Egs. (2) and (3), are
given by formulas for their Fourier images

Cinar (K) =~k € Coun(K) =ik e

m=nml » mCnmi >
oK, e)=0(e), o,,,(K.e)=ice K r.(e). (6)
The temporal equation for binary correlations (they are independent variables) has the form

Ou(En ) =12 [ X (K= X&)+ 07Xy (X=X 60—

~47(3p. &) —4m (&0, 30) (7)
The material equation for correlation current-field functions is given by the formula
(Jiﬁﬁgi)fl’)t = Zjd 3X”Gin,i"m (X - X”a‘g(x))(égifl;’gi)’(lv)t + Sin,i'| (X - X', n(x)) (8)

that matches the Onsager principle. The last term in (8) does not depend on time and is
proportional to the emitter quantity density Nn(X). Note that only the following its

components differ from zero

S2n,l| (k,n) =e,.k, S (), S2n,2| (k,n)= (5, - IZn l2| )T (n) )

where S, (n), T, (n) are known functions of A> order and k, =k, /K .

The temporal equation for the emitter energy density has the form

060 = (3, Ep) + 3,06 DE, (61 + R(N(X)) (10)
where the last term correspond to the full dipole emission of the emitters under consideration
R(n) =—2w*nd*/3xcC’. (11)

Proposed in this section description of the electromagnetic field with using the
relevant compact notation for the field, its correlations, and all material equations allows
to conduct general investigation of the considered system.

Modes of transversal electromagnetic field in the equilibrium medium of emitters

According to Egs. (2, 3), the transversal electromagnetic field, obey the equations

. . C
0,B!, =—ic[k,E],, 0,E, =i—[k,B, ], —47cE}, . (12)
k
The temporal equation for the electric field here has the form
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O.E\ +0,E\ 4o +E, &} |y =0. (13)
Its general solution is given by the formula
E. (t)=a,e™" +b; e (14)

where a; and b, are vector fields independent of time, z, and z, are quantities
defined by the formulas

W= =7, 2, =-1Q =y ka\/a’kz/ﬂk_(zﬂak)za Vi =270, (15)
(@, =ck ). According to Egs. (12) and (14), the magnetic field is given by the expression
k(t)__ [k aJ,e"" - [k b J,e" (16)

Expressions (14) and (16) can be regarded as a set of equations for the functions a, e*'

and b}, €™, thus obtaining

nk (t)

a;kezlkt TN nk (t), b;kezzkt =T AN nk( )—

2iQ 2|Qk L, 2|Qk 200, 44, Qk,uk

Therefore right-hand sides of these relations are modes of the transversal electromagnetic
field in the equilibrium medium. For our purposes the functions

S (D =EQ (D) +Lzrt1k M, 0l ® =2, ® (18)

ik My
are convenient for using as modes (later only the transversal field and its correlations are
considered, that is why the upper index t is omitted for simplicity). For further
consideration it is convenient to introduce compact designations connecting the field
modes with the field itself

Z, . a7

é/ink = ZRin,i’l(k)gi’lk ’ |nk z Rmul(k)gi'lk . (19)
Appearing here matrixes have, according to (15), the followmg non-zero matrix elements
|n 1l (k) - enml km H Rin,2| (k) = 6n| ,
ik/uk
. i Zg
lnll(k) ( 1) k €ami m > RZr:,i’I (k)Z(—l) Iz_gi5nl : (20)

Now we substitute the formula (19) into Eq. (4) with the expression (5) for current and
take into account the temporal equation for modes (18). Bearing in mind that field and its
modes are arbitrary functions determined by the initial conditions, we come to the identity

z |n|m(k geq)le”(k) Rlnll(k)zi’k (21)
where the designation is used

&y, (K, &) =ic;, (k) — 470y, (K, €). (22)
From the relation (21) via a simple matrix multiplication we obtain the formula

Z Rin,i”m (k)ai”m,i’l (k,e*) = Rin,i'l (K)z; . (23)

These formula shows that R

in,i'l (k’geq)

determining the evolution of electromagnetic field in an equilibrium medium and

(k) is a left eigenvector of the matrix a,;,
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corresponds to an eigenvalue Zz;, . Similarly, Ri:i'l (k) is a right eigenvector of this matrix

and corresponds to the same eigenvalue z;, .

Equilibrium correlations of electromagnetic field

For simplicity let us consider equilibrium binary correlations of the transversal
electromagnetic field restricting ourselves with the case of a uniform distribution of
emitters in space. Since they do not depend on time, Eq. (7), with taking into account the
material equation (8) and the definition (22), gives the relation

28 (KNG 6% + 8y (KNG 50 =
=42V (S, i (k) +S;, ,in(k')]gk',-k (24)

(we use a periodical boundary conditions, V is a system volume). Now, taking into
account the formulas (19) and (23), herefrom we find field mode correlations

(Zik + Zi’k’)(é’ii’é’il’(l’)eq =
=47V z Rin,i]n1 (k)Ri’I,izn2 (k') {Si]nl,i2n2 (k) + Siznz,iln] (k’)}é‘k’rk . (25)
Actual expressions (9) and (20) for matrixes entering here give the following expressions
for the binary correlation functions

(éwilriaé’il'{l,)eq = (é’ilr:’é/i’_lk)eq 5k’,—k >
~n 2T (n) @S, (n
(h ity =V am(3, Kk k) 2
Zic * Zix  CHZyZiy
Here we make allowance that for the system under consideration [1] material coefficients
o0,(¢), x(&) appearing in the material equation (3) and functions S,(n), T,(n)

- (26)

appearing in the material equation for correlations (8) are even functions of K,

o (&)=0(8), x. (&)=x), S, (=5 (), T,(nN)=T.(n), 27)
thus providing, in accordance with the formulas (15), the evenness of all the functions
that are expressed through them

Zi =Ly Q, =0, Vo =%» Moy = My (28)
(see also (4) in the paragraph ahead). In fact, this result is connected with the rotational
invariance of the considered quantities from which their dependence on |k | follows.

Concept of binary correlation waves
In the spatially uniform case the nonequilibrium correlation function (£X,&X), depends
only on the difference of coordinates, therefore their Fourier components possess the property

(E,E0), ~ Oy - Hence, the spatial non-uniformity of correlations is connected with the

dependence of Fourier components (&? e & prk/2 ), ona vector k; that can be regarded as a

wave one and indexes i,n,i’,1, p, should be considered to be component numbers. Obviously,
correlation functions of field modes f7;, (k,t)=(£P"%,&;,""*/?), can be used instead of

correlation modes of field itself. Low-amplitude motions of electromagnetic field
correlations can be described by deviations from their equilibrium values

S & = Ens&in ) — (Ens &)™, (29)
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According to Egs. (7) and (8) and the definition (22), in the equilibrium medium of
emitters such quantities obey the evolution equation

0,6( iﬁ > é:lkl)t = Z[ain,i”m (k,&™ )5(§|km ) fukl)t + &y o (K, &™ )5(;‘; > Ggukm )il (30)
Applying (19) and (23), we find from here an evolution equation for field mode correlations
0:8(Gin 6 ) = (T + 2y )G S )i (31)

i.e. they are also modes of correlations. The dispersion law for the modes of correlations
in an equilibrium medium is evident from the relation

0,0t (K, D)= (Zi poxsa T 2 p+k/z)5fir?,i'| (k,t) (32)
where 5" (k,t) = (S, 80P 7). (33)
At small wave vectors we have, according to the formulas (15) and (28):
mode dispersion law
ot (K1) 20 -2y, +0(k%),
Ot (K1) -i2Q, -2y, +0(k?),
fip (K1) ic(p) Pk, =27, +O(k*),
St (k.0) —ic(p) Pok, =27, +O(k*) (34)

(c(p)p, =0Q,/0p,). Thus, in the limit of small wave vectors, the first two modes of

correlations are damped oscillations and the next two modes describe decaying waves
with the propagation velocity +C(p)p, depending on the direction of the vector p, .

Coupled oscillations of field correlations and a medium consisting of emitters

Let us consider coupled oscillations of field correlations and medium near the
equilibrium. Coupled oscillations of an average field are absent according to (4) and (5) since

in equilibrium the average field equals to zero &' =0 . To derive an equation for correlations
we proceed from the relations (7), (8), (22), thus obtaining the generalization of Eq. (30)
615(§ilr(1 ) §Ik| h = Z[ain,i”m (k,&" )6(§i|:m > ég.k| ) + g o (K, &% )5(§|l:1 > gil’(’m )+

1 D
+—— 08,0, o (K, ENEL E)+
8qu |Z" K+k"™"in,i m( )(é m §|| )

1 e - e
+8eqv izggk+k'6i'l,i”m(_k78 (&) (35)

where the proportionality of o, ;,(K,&) to & is taken into account. Eq. (10) for the

density of emitter energy near the equilibrium Je(X,t) =&(x,t)—&* acquires the form
taking into account Eq. (5)

1 r e ! —k'\e 1 r e ' g
0,06, =W§gkzain,i'l(k ) (- +Vz<7m,n(k £ ) - (36)
ik ik
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In terms of mode correlations, these equations, according to the formulas (19) and (23),
can be rewritten as follows

até‘(é,ilr(vé’il’(ll)t =(Zy + Zi’k’)é(é/ilrj’é/il’(lr)t +

qu 258k+k in,ijn (k)o-ilnI ,i"m( , eq)RI m,i,n, ( k )(é/u N, ° é’l| )eq

258k+k |I|n(k )Umlm( k geq)lelznz( k)(é’m’é:lnz)eq

qu ijipi”
até“gk 6‘qu 6gk Z Glnll(k’ eq)Rll iy (k )Rln |2n2( k’)(é’lrl';] 7é/i;:2’)eq +
INIING
+_ Z O-Inll(k, eq)Rll o (k )Rln Sy (k k' )é‘(éllln1 ézlzn2 ) : (35)

i’k
Herefrom with taking into account the definition (33), we obtain the coupled set of
equations for correlations of field modes S f;};, (k,t) and medium energy density J¢, (t)

a 5frr1)|l(k t) {ZI p+k/2 + ZI p+k/2}5 Ell(k t)+ M " (k)é‘gk(t)

in,i'l

0,06, (t) = Zjd PN (K) S P, (K, D) +v g, (t). (36)
The equations 1nclude coefﬁc1ents defined by the formulas

k kK & k
|n||(k) qu Z |n,i,n1(p+5)o-ilnl,i”m(p__ & q)R|m|2n2(p_5)><

ijiyi”

(é/lpnk/z éz p+k/2)eq+

L _p+K _E e _k
+6_qu %;Ri'l,ilnl( p+ z)o-i,nl,i”m( p € )R|m|n (-p 2)><
X(§|p+k/2 ézlnp k/2)eq (37)
| ) qu(2 ) %J.d ko_lnll(k’ eq)Rlnln( k)RI|Ir| (k’)(é/itr;pé’i:r:')eq’ (38)
K e k
|nll(k) 2 ) Z Oin,. |2n2(p+_ 3 )Rlznzln(p+ )Rllnlll(_p+5)‘ (39)
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Notice that equilibrium correlation functions, according to the expressions (9) and
(26), are proportional to the system volume and have the second order in interaction.
Therefore in the set of equations (36) coefficients are of the following orders

M ig,i’l (k)~ A%, Nig,i’l (k)~ 27, v~ (40)
and do not depend on volume in the thermodynamic limit. The solution of the set (36) can
be searched for in the form &f),(k,t)=Cp,(k)e™, S (t)=Ce™, it gives the
following dispersion equation

Mifin KONz (K)
-7 z

(41)

z=v+Zjd3pZ

i,p+k/2 — &i'—p+k/2

Its analysis can be based on the account of estimations (40) and on the detailed analysis
for the case of small wave vectors; this will be done in another place.

Here we restrict ourselves to the analysis of (36) in the elementary perturbation
theory in weak interaction. In order to simplify the formulas, we analyze a set of
equations that are similar to the set (36)

X =z +ay, y=2 bx+cy (42)

where coefficients have the following orderin A: a, ~A*, b ~ A%, ¢~ A*. We search for
a solution in the form of series in powers of 1. Quantities z, in Eq. (42) are analogues
to quantities Z; ,,,,, +7Z; ./, 10 the set (36), the last ones can also be expanded in 4

according to the formulas (15). However, we shall not expand z, in a series in A while

constructing perturbation theory for the set (42). It will allow avoiding partially time
secular terms arising in the perturbation theory. Simple calculations give

K =ne Y @ D +0), Y=y, + AR E D rggrou) @)

where X, =X |, Yo=Yl Secular term presence in the second expression is
physically connected with the fact that really corrections to the frequencies z; occur.

Some interesting conclusions can be made from (43). If at the initial time moment the
subsystem of field correlations is equilibrium and x;, =0, at the next time moments non-

equilibrium correlations take place

a .
X, =0 = xizyoz—_'(et'—l)+0(/16), y:yO+Z+cyOt+O(/16). (44)

1
It means that the medium of two-level emitters radiates waves of correlations.

Alternatively, if at the initial time moment the subsystem of emitters is equilibrium and
Yy, =0, it is excited under the impact of correlation waves
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=0 = x=xe 10, y=Y B e 110G, 45)

Obtained results show the non-trivial dynamics of the system of emitters and
electromagnetic field. Near the equilibrium emitters do not interact with an average field,
but interact with binary correlations of the field.

Conclusions

Modes of average transversal electromagnetic field and its correlations in a medium
consisting of two-level emitters described by the Dicke type model have been
investigated. Four types of correlation modes in the equilibrium medium of emitters have
been found. Among them two types of correlation modes correspond to a damping
oscillation process and two other correlation modes correspond to decaying waves. In this
connection the concept of electromagnetic correlation waves has been proposed. In some
sense these waves are close to secondary waves discussed in the condensed matter theory.
Particularly, we mean the second sound in a superfluid liquid that can be considered as
sound waves in the phonon subsystem (see, for example, [7]).

In the case of a nonequilibrium medium, its coupled oscillations with the oscillations
of the field correlations have been studied. The phenomenon of field correlations arising
(correlation waves radiation) in the process of emitter medium evolution has been
predicted. On the other hand, waves of correlations can break equilibrium state of the
emitter subsystem. The obtained dispersion equation (41) is similar to the one
investigated in the mode-mode coupling theory. An approach developed in the last theory
will be applied to our analysis of this equation in a subsequent paper.
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REAL-TIME FORMALISM FOR POLARIZATION OPERATOR OF
A CHARGED SCALAR PARTICLE IN EXTERNAL ELECTROMAGNETIC
FIELD

We extend the Keldysh real-time formalism to investigate the retarded polarization operator of a
charged scalar particle in a statistical system that under the action of an external field deviates to any
extent from the state of thermodynamic equilibrium. We consider the peculiarities of the interaction
picture that exactly accounts for external field, the so-called Furry picture, and the perturbation theory of
electrodynamics for nonequilibrium processes. The interaction Hamiltonian, S-matrix, and density matrix
in the external electromagnetic field are constructed. We use these quantities to define the expectation
values and Green’s functions. The detailed analysis of the expansion of the casual Green function up to
the e terms is performed. We obtain the one-loop retarded polarization operator of charged scalar
particles in the coordinate representation. The desired expression is presented as the sum of three terms
given by means of integral equations. Some applications of the obtained results to the problem of the
energy spectra of charged particles at external conditions and further prospects are discussed.

Keywords: scalar eclectrodynamics, polarization operator, Keldysh formalism, finite temperature,
external electromagnetic field.

Msb1  pacmmpsiem  ¢opManusM  peajbHoro BpemeHn Kemgblma s MccieloBaHUs
MOJIAPU3ALMOHHOI0 ONIEPATOPA 3aPSKEHHBIX CKAJSIPHBIX YaCTHII B CTATHCTHYECKOM cucTeMe, KOTOpas
noj fAeiicTBHEM BHEIIHEro MOJsi MOKeT CKOJb YrogHO CHJIbHO OTKJIOHATHCA OT COCTOSIHHSA
TepMOAMHAMHUYECKOT0 paBHOBecHsl. PaccMoTpeHbI 0CO0EHHOCTM TIOCTPOEHHs TpeACTaABJCHUS
B3aHMO/IeiiCTBHS, KOTOpPOe TOYHO YYHTBHIBaeT BHelllHee MoJle, TaK Ha3biBaeMasi kapTuHa ®appu, u
TeOPMH BO3MYLUEHMI CKAJSIPHOW 3JIEKTPOAMHAMUKHM /JJsl HepaBHOBeCHBIX mnpoueccos. IlocTpoen
raMHJIbTOHHAH B3aHMMOJEiiCTBHA, S-MaTPHIa M MATPHIA IVIOTHOCTH BO BHELIHEM 3J1¢eKTPOMATHUTHOM
nose. C nMoMombi0 NMOCJHEAHUX ONPENeJICHO CpefiHee 3HAYeHHe ONepaTopoB (GH3MYEeCKHUX BEIHYHH H
¢dyukuun Tpuna. IpoBeneH aeTANbHBI AHAIM3 WICHOB pA3JIOKEHHS NOPSAAKA e’ NPHYUHHOMN
¢Gynxknun I'puHa, Ha ocHoBe dYero OblL1a HaiileHa ¢opMa OJHONET/IEBOI0 3ala3[AbIBAIOIIEro
MOJISIPH3allHOHHOI0 OMepaTopa B KOOPAMHATHOM mpejcTaBieHnH. Mckomoe BbIpaikeHHe sIBJIsIeTCS
CYMMOIi Tpex cJlaraeMbIX, KaJI0e M3 KOTOPBIX OMNpeJeasieTcsi HHTErPaJbHbIM COOTHOIIECHHEM.
OOcy:knaroTest JajbHelillide MePCHeKTHBbI U HEKOTOpbIe NPUJIOKeHHs! MOJYyYeHHBIX Pe3yJbTaTOB K
3ajave MOMCKA CMEKTPOB 3aps’KEHHBIX YACTHIl BO BHEIIHUX YCJIOBHSAX.

KiaioueBble caoBa: cKalsipHas 3JEKTPOJMHAMUKA, HOJSPU3ALMOHHBIN orepaTop, (opMau3m
Kennpinia, koHeuHas TeMIepaTypa, BHEIIHEE MIEKTPOMarHUTHOE I0JIE.

Mu posmuproeMo dopmalizM peansHoro yacy Kenauma pis JociaigKeHHs1 nojspusaniiiHoro
oneparopa 3apsi/UKeHUX CKAJISAPHUX YACTHHOK Yy CTATHCTUYHIil cucreMi, sika mix Ai€l0 30BHIIIHLOIO
MoJIsl MOKe SIK 3aBrOJHO CHJIbHO BiIXWJIATHCH Bill CTaHy TepMoAMHAMi4HOI piBHoBaru. Po3riasiHyTo
0c00IMBOCTI MOOYI0BH NpeACTABJIeHHs] B3a€MOJii, sike TOYHO BPaXOBY€ 30BHIllIHE MoJie, TAK 3BaHA
kapTtuHa @appi, Ta Teopii 30ypeHb CKAJIAPHOI eNeKTPOAMHAMIKH I HepPiBHOBAKHHUX IMpoleciB.
Ilo6ynoBaHo ramiibToOHiIaH B3aemMoAii, S-MaTpUUs Ta MATPUUS TYCTHHH Y NPUCYTHOCTi 30BHILIHBOTO
€JIeKTPOMAarHiTHoro moJs. OcraHHi 0yJI0 BUKOPHCTAHO A/ BH3HAYCHHS CepeJHIX Bil omepartopiB
¢isnunux pesmunn i ¢pynkuii I'pina. IIpoBeneHo nerajabHuii aHaJ3 4/leHiB PO3BUHEHHS NOPAAKY ¢’
npu4uHHOI pyHkuii I'pina, Ha ocHOBI Yoro 0yJo 3HaiineHo ¢opMy 0OJHONETEJIBLHOI0 NOJIAPH3aLiiiHOrO
omeparTopa, 10 3amMi3HIOETHCS, B KOOpAWHATHOMY mpeactasienHi. lllykannii BHpa3 € cymMoI0 Tpbox
JOMAHKIB, KOKEeH 3 SIKHX BH3HAYEHO IHTerpajJilbHUM cHiBBilHOMEHHAM. OOroBoprOOThLCS MOAAJbIII
NMepcrneKTHBH TA JesAKi 3aCTOCYBaHHSI OTPMMAHMX pe3yJbTaTiB A0 3a4a4i MOLIYKY CIEKTPiB eHeprii
YaCTHHOK Yy 30BHilIHiX yMOBax.

KuiouoBi cioBa: ckamsipHa eNeKTpOAMHAMIKa, MOIpH3aliiHMI omepaTop, dopmanism Kenania,
CKIHUEHHA TeMIIepaTypa, 30BHIIITHE eJIEKTPOMAarHiTHE MoJIe.
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Introduction

Spectra of charged particles in external electromagnetic fields at finite temperature
are important objects having various applications.They allow calculation and
investigation of all thermodynamic functions of many-particle systems. Usually, to
investigate a spectrum, the imaginary time formalism of finite temperature field theory is
applied. However, in this formalism to perform an analytic continuation and derive
spectrum by means of functional equations, an expression of interest has to contain a
convenient integral representation (such as Fock-Schwinger proper time representation).
Because of such difficulty, within this approach, the spectrum of gluons at finite
temperature in the presence of chromomagnetic fields was calculated only for some special
cases [1 - 3]. We are going here to apply an alternative approach developed already by
Keldysh [4] and Schwinger [5] in studies on nonequilibrium quantum statistics. This
method is out of technical difficulties related with the analytic continuation.

In reality, an environment considered is realized in heavy ion collision experiments at
RHIC and LHC where very strong magnetic field are generated [6, 7]. The presence of
magnetic field can be a source of properties of quark-gluon plasma discovered in modern expe-
riments. So, the working out of formalism convenient in the described background is of interest.

In the present paper, to develop formalism, we investigate the case of scalar
electrodynamics. At first, we consider the Keldysh formalism in the presense of external
comditions. Further the perturbative analysis of exact two-point Green function is
performed and the one-loop polarization operator of a charged scalar particle is calculated.

Scalar electrodynamics at external conditions

In the present section we develop the Keldysh formalism for scalar electrodynamics
in an external field considering the one-loop polarization operator of a charged scalar
particle as example.

The Lagrangian of a charged spinless particle in the external field reads

. . ext\* . . ex 1 v
L= (0, —ied, —ied, N (p+(x)(8ﬂ —ied, —ied, t)(p(x)—ngf(x)(p(x)—ZFwF” , 0
F,=0,4,-0,4,, e=le|, g" =diag(1,-1,~1,-1)

where 4, is potentail of radiation field, Afj” denotes potential of external

electromagnetic field, satysfying the equation of motion 0, F/;/ = 0.
We present the Lagrangian as the sum of three terms
L=Ly+Ly+L,,.
They are as follows
Ly = (0, ~ied,) p* (1)@, ~ied,)p(x) = m>¢" (x)p(x)
is the Lagrangian of scalar particle in the external field,

1
Ly == FuF"

is the Lagrangian of free radiation field,
L, = ie(p+D#go AP —e*ptpd?
is the interaction Lagrangian where
9" D,p=—(0, - ieAsz)*go+go +9 (0, - ieAZXt)go )
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Real-time formalism for polarization operator of a charged scalar particle in external electromagnetic field

We define canonical momenta and introduce interaction Hamiltonian
H= jaf3x(7r7fr +ieAdS" (wp -t o)+ (V + ie?lm Yoo (V- ie}iext Yo—m?o g+
+iedy(rp -7t )+ l'e;w* (V- ieA® Yo —ie(V + ie?lext Yo Ay 0+ ezgfq);iz) +H} (2)
Note the relation between interaction Lagrangian and Hamiltonian,
2 2
H;y =—L,, —e 4 0 . 3)
As we see, these functions differ by a non-covariant term, as is usual for time-
dependent interactions [8].

int

Scalar electrodynamics in external fields at finite temperature
Following [4], we define the density matrix

D =, 090 = O, 1) 4

with boundary conditions
Qo —Hy(—0) = Hy(-»)

kT
where Hamiltonians are defined according to the previous section.
The complete set of wave functions in magnetic field is the solution of the equation

(P, +ed™) —m®)p, (x)=0,
ext __
A5 =(0,0,H - x,0).

p(=0)=py =exp

We split the wave functions of stationary states ¢, with defined momenta p y» P.,and energy

ef = 4\p2+m’+|e|@n+1)
= U .
_ —lepttipyy+ipzz
Y, —e " ’ : fn (X)
in two sets. The first set contains wave functions with positive frequencies, the second
one - with negative frequencies. We denote them as go:f (x). Field operators ¢ and ¢
are of the form

9o (x) = X(g, (N)a, +¢, (b)),

0§ ()= X(p," (0)ay + 9, (X)b,),

n

+ g4
and a, , b

- satisfy the commutation relations for Bose-operators. Field operators satisfy

the equation
i—>=[p,Hy]

These operators and operators of radiation field 4, form the interaction picture of scalar

electrodynamics in an external field (so-called Furry picture).
We solve the density matrix equation with S-matrix

S(t,—0) =T exp(—i jH,-m (t')dt').

Density matrix at time t is

p(1) = S(t,~0) p(t)S” (t,0).

58



V. V. Skalozub, E. V. Tsygankov

In what follows we consider the statistical averages of operator products taken at various
time moments. So it is convenient to carry-over the time dependence of density matrix to
operators, therefore we switch into the Heisenberg picture. We set density matrix at time ¢
= 0 accounting for all changes from the moment of switching the interaction on:

p = p(0) = 5(0,~0)p(1)S™ (0,%0).

Now we use the operators which at # = 0 are equal to the free ones because the density
matrix is defined as p(0)

9(x) =5(0,x)py (x)S(x,0)
where, by definition,

;
S, t)y=T exp(— i[H,, (t")dt"J =S(t',—0)S* (t,~0).
t

Statistical average of the T-products of Heisenberg operators can be transformed into the form
Tr(pAD)B(')...)= Tr(poT. (A (0)By (1)...5,)). )

where T, stands for ordering along the line which runs from —oo, passes throught the

points #,#..., runs to + oo and then returns back to —oo .
The statistical averages of the T-products for operators of scalar and electromagnetic
fields in the interaction picture

Tr(poT(p(x))p(x2)..0(x,)p" (x))9" (x2)..07 (x,,))
Tr(poT (A4, (x1)...4, (x,,))

can be reduced to sums of the products of pairs of these operators [9].
The Green functions of scalar field ¢ in the interaction picture are defined as follows

Gy (1.7, 2,F) ==iTr(p T, (9o (¢, F)pg (1.F)) ==iTr(po T (9o (1. F)pg (47))),
GE (¢ 7.t 7 = ~iTr(po T (9o (t_F)pg (¢ 7)) = ~Tr(poT (0o (t_Phpg (7)),
Gy (17,17 ==iTr(po T, (po (t_F)pg (£7)) = =iTr(popo (_F)pg (L1F),
G (7,2 F) ==iTr(po T, (po (1L, F)pg (1LF)) = =iTr(popg (147 )py (1,.7))

where ¢, stands for the point on the positive branch of integration line, 7_ stands for the

point on the negative one, and T denotes anti-time-ordering operator.
Exact Green’s functions are defined as

G" (.7, £7) = =iTr(p,T.(,(t.F)d; (£,7)S.,)).
G" (7,1 F) = ~iTr(p,T.(¢,(tF) (£ 7)S.,) (6)

G* (1.7, 157") = =iTr(po T, (9o (1:7)pg (157)S.)) -

The results of this section are applied to calculate the one-loop polarization operator
below.
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Real-time formalism for polarization operator of a charged scalar particle in external electromagnetic field

Retarded polarization operator in order ¢’

To obtain the particle energy spectrum, we investigate the poles of the full
retarded Green function. One can derive it by solving the Schwinger-Dyson equation
where the one-loop retarded polarization operator is taken into account. The similar
method was applied to find the spectrum of QGP problem in Ref. [10].

The polarization operator and Green function are related by the Schwinger-Dyson
equation

G(x,x") =G (x,x") + fd)ﬁdyz Go(x, y)(y1,y2)G(y5,x")

c_[6" 6} o _ (G G _(nf oo
¢ ¢") " |6 6f) n ot/

Considering this equation in the order ez, we substitute G(y,,x") to Gy(y,,x")

where

under the sign of integration.
G (x,x') = [dyydy (G (2, y) T (91, 32)G " (y2,x) +

+ Gy (31, 9)G" (07, x)+ G (e, y) T (31, 2)G (v, x) +

+G @) (31,32)G (2.0 (7)
We consider G (x,x") in order ¢’to obtain the components of the polarization
operator.

Gy (1.7, 6.7 ==iTr(p T, (9o (1.7)gg (£47)S,.)),

§= Texp(i oJ?Lint (t)} S= Texp(_ i O.[OLint (t)j’

G® (x,x") = =iTr( po [dy dy, (T(py (x)gg (x' ) Lﬁ,i? (y)Ly) (v2)) +

(=)’
2!

+ T (L) () T (9o (g (XL (1)) +

+ po Jan T (oo (07 LD () + FALD GO T o D) (8)

+ T2 L) ()L () T (00 ()G (x7)) +

Let us turn to the first term of this expression

—~iTr po Jdvidy, T(po (x)og (x )—LEB ()L (v2)) =

.l . v ’
= —z;(ze)zfdyldyz( 2D5 ™ (11, 72) - GE (x,y))D G (31,3,)D" G (v2,x') +
+G¢ (6, )D*GE (31,%") - 2Dg ™ (31, 2) - (—iTr(po T(po(32)D" 05 (¥2))))) +

+G¢ (x,x )—deldyzrrmo(LE,i? LY (). (9)
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The last expression can be presented as the sum of diagrams in Fig. 1.

+ +
e —
+ +r }+ + @
I + +
A s I
L + + +
_h_l_.-_
(a) (b) (c)

Fig.1 One-loop contributions in // F coming from LE,IZE .

Solid and crossed lines correspond to Green’s function of scalar particle and photon respectively.
Sign «+» denotes the vertex on the positive branch and «-» — on the negative one.

A type (b) diagram equals to zero in a constant homogeneous external field
because the particle 4-momentum is conserved [11]. The disconnected diagrams cancel
each other out. Hence, we obtain

fdidy,G" (e TG (01, 12)GF (9, x7) =

=ie® [dy,dy, D§ " (v1.¥2) Gy (x,1)D"G{ (31, ,)D"G§ (v5.x")  (10)

where H(If) (»1,¥,) in Eq. (7), is a contribution to - (»1,¥,) coming from L(.l)(yl).

int
We denote T7(p, ...) =(...)o for convenience.
We rewrite the next term of (8) as follows

— i[dy(T (o (X)pg (X WILE) (1)) =
=—ie” [dyG{ (%, )G (1,x") - €, Dg ™ (1, 9) + G (x,x)dW(T (L) () =

:Id)ﬁdyzGF(X,J’])Hé) (J’1Jz)(z)GF(yz,x')+G(I)F(X,x')Idy<T(L52 () (A1)
where

15 (1, y2) = =ie*0(y, = )& - D¢ (71, 72) (12)

is the second contribution to the polarization operator /7 £ V1>>2) -
Let us consider the last term of the expression (8)

— ifdy, dy, (T (~iL) (7)) T (o (x)gg (xiLY) (v2)) =
=ie” [dy,dy, Dy " (y1, y2)( Gy (x, 3)D,Gy (v, x") - (=i{ T(¢y (»,) D,y (1,))o +
+Gy (5,¥2)D, G (y2.x") - (< T(py (»)D,05 (31))o +
+ Gy (%, 91)D, Gy (y1,72)D, Gy (y2,x) +
+ Gy (%,92)D"Gg (y2.31)D" Gy (31.x) +

+ G (e, xdy dy, (T (=iL$) (y)) TGL,) (7))o (13)
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Real-time formalism for polarization operator of a charged scalar particle in external electromagnetic field

We represent the obtained sum as the sum of diagrams in Fig. 2 (except for the last term).

@ Q J_\_ + + _/_\4__;
| 1 I o 1
. N s
-1 + o+ +: + N N—

+

(d) (e) () (g)
Fig. 2 One-loop contributionsin /7~ and I77 .

Diagrams of type (d) and (e) equal zero the same way as the diagram of the type (b)

does. Diagrams (f) and (g) contribute to /7~ and /1™, in accordance with Eq. (2).
Reducing the rest of terms in expression (8) by the Wick theorem

2
. =~ (i ,
iy (T (5= L) L) () T (o (05 (5o =

—ifdy(T LG (DT (9o ()5 (D)o, (14)
we see that they do not contain the casual function Gép which depends on x or x'.
Therefore they have no effect on /7 F.II" and I~ but define I7 F . Their contribution
containing vacuum diagrams is

2
r . ~ —1 . ~ .
Gy (x,x )(—zjdyldyﬂ(%LE}z? DLt (2o = ifdy(T LG (7))o )

The sum of all the vacuum loops in GF® (x,x"),isa (S*S), in order e?, and obviously

equals to zero.
The retarded Green function is defined by means of statistical average over the
Heisenberg density matrix

G* (x,x) =0 = ){[p(x),9 " (x)]-
It is related with the above defined Green function by the equation

GR=GF -G*=-GF +G~
and satisfies the Schwinger-Dyson equation

G (x,x") = G§ (x, x") + [dyydy, G§ (x, y TR (31, ¥2)GR (15, %)
where

=t vt =—at )
Finally, we obtain formula for I7* by using Eq. (13),
Jdyydy,Gg (x, y)IT* (11,72)Gg (v,27) =

= _iezfd)ﬁdh Daw (Y2, 01)- G(f (x,y)D*Gq (31, y2)D"Gg (y2,x"). (15)
Summing up the carried out analysis of the expansion of the full Green function,

1% is the sum of I7 (IT) +11 g) , the retarded polarization operator looks as follows

n® =mhy+nb + 1. (16)
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Its terms are defined by means of integral equations (10), (12) and (15). In this way the
polarization operator of charged scalar particle in the electromagnetic field at finite
temperature in the Keldysh formalism is constructed.

Conclusions

In this paper we have considered scalar electrodynamics at external conditions.
We obtained the one-loop polarization operator of a charged scalar field at a finite
temperature and in an external electromagnetic field.

Given by Eq.(16), the one-loop retarded polarization operator 17 R allows to
investigate spectra of charged scalar particles in different environments. For this purpose
we have to substitute it into the Schwinger-Dyson equation

G" (x,x") = G (x,x") + [dyydy, G§ (x, y) T (1, 92)GR (v, %),

and study the singularity positions of the full Green function in momentum space. This
problem will be considered separately.
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OPTICAL PHENOMENA IN MATRIX NANOCOMPOSITES BASED ON
SYNTHETIC OPALS

The matrix nanocomposites based on synthetic opals with pores filled with various active
dielectrics (Bi;;Si0y, Bij;GeO,y, TeO,, KH,PO,, PbsGe;0;;) are obtained. The fact of pores filling is
proved by the changes in the reflection or transmission spectra. The crystalline state of embedded
dielectrics is determined on the base of measured Raman spectra of the obtained nanocomposites. In all
cases, Raman spectra of the nanocomposites undergo the changes (appearance of new bands, shift of
the bands, spectral intensity redistribution) compared with the spectra of single crystals or
polycrystalline powder of corresponding dielectrics. The modification of the photoluminescence
spectrum of the opal-Bi;,SiO,, system is connected with increasing the number of surface states under
the restricted volume conditions. The appearance of intense emission in the opal-KH,PO, spectrum
under a 532 nm laser excitation is probably assigned to spontaneous parametric down-conversion which
becomes observable due to enhancement of the pump field inside synthetic opal.

Keywords: photonic crystals, Raman scattering, luminescence, spontaneous parametric down-conversion.

IHosryyeHbl MAaTpU4YHbIe HAHOKOMIIO3MTHI HA OCHOBE CHHTETHYECKHX ONAJOB, NMOPHI KOTOPBIX
3aM0JIHAIOTCSl Pa3jIMYHBIMH AKTUBHBbIMH JudjekTpukamu (Bi;Si0,), Bij;GeO,y, TeO,, KH,PO,
PbsGe;0,;). @akT 3anoHeHHs] MOP MOATBEP:KIAETCS H3MEHEHHSIMH B CHEKTPaxX OTPaKeHUusl MU
nponyckanusi. Ha ocHoBaHMM H3MepeHHBIX CHEKTPOB KOMOMHAIIMOHHOIO paccesiHusl CBeTa
MOJYYEeHHbIX HAHOKOMIIO3UTOB YCTAHABJIMBAETCH KPHCTAJVIMYECKOe COCTOSIHHE BBeJeHHBIX
AU3JIeKTPUKOB. Bo Bcex ciyyasix CeKTpbl KOMOMHAIIMOHHOIO paccesiHMsl CBeTa HAHOKOMIIO3MTOB
NMpeTepneBalT H3MeHeHHs (MOSIBJeHHMEe HOBBIX I0JI0C, CMeLleHHe T0J0C, MepepacnpeneleHne
CHEKTPAJIbHONi  MHTEHCHBHOCTH) 10 CPAaBHEHMI0 CO CHEeKTPAaMH  MOHOKPHCTAJLUIOB  HJIM
MOJUKPUCTAJIMYECKUX MOPOIIKOB COOTBETCTBYIOIIUX [IHIJEKTPUKOB. Moaudukanus cnekrpa
¢oTomomuHecueHuun cucrembl onaja-Bi;,SiO,, cBs3bIBaeTcs ¢ yBeJMYeHHMEM MOBEPXHOCTHBIX
COCTOSIHMY B YCJIOBUSIX OTPAHU4YEHHOT0 o0beMa. [losiBjIeHe HHTEHCUBHOIO CBEYEHMSI B CIIEKTPe OnaJi-
KH,PO, npu na3zepHoM B030Yy:KIeHUM HA [JUHE BOJHBI 532 HM CBSA3BIBAETCSI CO CHOHTAHHBIM
napaMeTpu4ecKUM paccessHHEM CBeTa, KOTOPOe CTAHOBUTCH HAa0JI0AaeMbIM BCJeICTBUE YCHJIEHHUS
MO/ HAKAYKH BHYTPU CHHTETHYECKOI'0 onaJja.

KiawueBbie cioBa: (QOTOHHBIE KPHUCTAJUIBI, KOMOMHAIIMOHHOE pPACCESHUE CBETa, JIOMHHCCICHIIHS,
CIIOHTAHHOE NapaMeTPUIYECKOe paccesiHie CBETa.

OtpumaHi MaTpH4YHi HAHOKOMIIO3MTH HA OCHOBi CHHTETHYHHMX ONAJIB, IIOPH SKHX 3aNOBHeHi
pisnumMu akTHBHUMHU AienekTpukamu (Bi;SiOy, Bij;GeO,y, TeO,, KH,PO, PbsGe;O0). Pakrt
3al0BHEHHsI NOP MiATBEpP/Kye€Thes 3MiHAMM y cHeKTpax Bin0uBaHHsA 4yu nponyckanHs. Ha migcrasi
BUMIPSIHMX  CHeKTpiB  KOMOiHAWiliHOrOo  po3CisiHHSL  CcBiTVIa  OTPMMaHMX  HAHOKOMIIO3MTIB
BCTAHOBJIIOETLCSI KPUCTAJIYHUN C€TaH BBeJeHHMX [ieJeKTPUKiB. Y BCiX BHNaAKaX CHEKTPH
KOMOIHALIHHOIO po3CiiHHA CBiT/Ia HAHOKOMIO3MTIB 3a3HAIOTh 3MiH (MOSIBA HOBHX CMYT, 3CyB CMYT,
Mepepo3Nnoiijl CHeKTPAIbHOI iHTEHCHBHOCTI) MOPIBHSAHO 3i CHEeKTPaMH MOHOKpHCTATIB a0o0
MOJTIKPUCTATIYHMX MOPONIKIB BiInoBigHUX niejekTpukiB. Moaudikauis cnexkTpy ¢orosromiHecuenuii
cucreMu onaji-Bi;;SiOy) moOB’sI3yeThbes i3 3pOCTAHHAM IOBEPXHEBHX €HEPreTHYHHX CTaHIB, IIO
BinnosigawTe aedexram abo gomimkam, 3a yMoB 00MexkeHOro 06’emy. IlosgBa iHTEeHCMBHOIO CBIiTiHHSA
y cnekrpi onaia-KH,PO, 3a JsazepHoro 30ya:keHHsi Ha NOB:XKHMHi XBWai 532 HM moB’si3yerbes i3
CIMOHTAHHMM NapaMeTPHYHUM PO3CISIHHSIM CBiT/Ia, SIKE CTA€ MOMJIMBHM CIHOCTepiraTH BHACIIIOK
TOCHJICHHSI N0/l HAKAYKH ycepeHi CHHTEeTHYHOT0 0MaJia.

KurouoBi ciaoBa: GoToHHI KpHcTany, KoMOiHaLiiiHEe PO3CIsHHS CBITJA, JIIOMIHECICHIIiS, CIOHTaHHE
napaMeTpUYHe PO3CISHHS CBITIIA.
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Introduction

The creation and investigation of the matrix nanocomposites with active dielectrics
attracts a great attention in physics of low-dimensional systems. Physical properties of
nanocrystals of active dielectrics should be essentially different from those of bulk
crystals because of the quantum-size effects in electronic and vibrational spectra [1]. On
the other hand, in case of periodical arrangement of the nanocrystals, the effects attributed
to the photonic crystals should be also expected. Thus, such structures have to enlarge our
opportunities in the light flows controlling [2].

As a base matrix for obtaining these structures the synthetic opals are widely used.
Regular arrangement of cavities and channels in initial synthetic opals allows for getting
3D periodical structures for a wide range of organic and inorganic compounds. A typical
embedding procedure is a soaking of initial opal into the compound solution at
temperatures close to room temperature or into the melt of compound with the following
crystallization by cooling [3, 4]. In this case, a solid phase of embedded compound is
formed under the other conditions than as usual. These special conditions are the high
temperature, the limited volume of pores and the lack of atmosphere into interior pores.

The present work is devoted to the obtaining of matrix nanocomposites based on
synthetic opals whose pores were filled with active dielectrics (Bi;,Si0,, Bi;2GeO,y,
TeO,, KH,PO,, PbsGe;Oy;), to their characterization with the use of reflection (or
transmission) and Raman spectroscopy technique and to the study the secondary emission
spectra of the obtained structures.

The obtaining and characterization of samples

Bulk opals were grown by slow crystallization of a colloidal solution of
monodisperse SiO, globules synthesized by modified Stober method [5]. After drying in
air the obtained precipitate was annealed at 125 °C for 1 h, then at 750 °C for 2 h. The
opal structure was a face-centered cubic lattice formed by hexagonal close-packed layers
of monodisperse globules. To determine the structural parameters of opal matrix
(globules diameter D and interplanar distance d) and, consequently, to estimate the
geometrical sizes of pores the Bragg diffraction spectra in the reflected beams have been
measured. According to the Bragg law, a spectral position 4, of the reflection peak is

connected with an interplanar distance d as follows

I (0)=2dJe,5 —sin®0 (1)

where 6 is an incident angle of light beam on system of the {111} planes, &, is an

effective dielectric constant. The latter is determined by the dielectric constants ¢; of
substances which form the composite and the volume part of substance f; as follows

geﬁ‘:0‘74'8Si02 +Zfl"8i5 Zf,:()26 )

The connection between D and d is determined by the geometry of globules arrangement

and, in our case, is simply as D=d J3/2 . For different opal samples in study the values
of diameter D and interplanar distance d were varied between 250 — 270 nm and 204 —
220 nm, respectively. An average linear size of pores was about of 70 nm.

The filling of opal pores was carried out by melting-in a fine dispersive
polycrystalline powder of corresponding dielectrics. (The exception was made in case of
KH,PO,4 (KDP), when the infiltration was performed by a multiple soaking of opals in
supersaturated water — KDP solutions at room temperature.) For this purpose, a thin
uniform layer of the substance powder was placed on the surface of synthetic opal (or
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under the surface) and the whole system was held in the resistance furnace at
temperatures above the substance melting temperature for 15 — 30 min. After this the
samples were cooled down room temperature with the average cooling rate of 3 °C/min.
The filling of opal pores with active dielectrics resulted in shifting Bragg reflection
peak to the longer wavelengths, if the refractive indexes of embedded dielectrics were
higher than that of SiO, globules (ns;0> = 1.47). The reason for it is the increase of Eof by

enlarging the value of the latest part of sum in expression (2). Some results corresponding
to this case are presented in Fig. 1. In case of the close values of the refractive indexes of
opal matrix and embedded substance, e.g. for opal-KDP system (ngpp = 1.49), any
significant shift was not observed, but the halfwidth of the Bragg reflection (or non-
transmission) peak became smaller with an each next infiltration cycle (Fig. 2). It can be
explained by diminishing the optical contrast in such system.
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Fig. 1. The reflection spectra of initial opals (curves 1 in both parts) at 6 = 7" and the same opals after
filling with Bi;;Si0,, (curve 2 in the part a) and with TeO, (curve 2 in the part b) at 8 = 60° and 70°,
respectively. The curve 3 is the calculated reflection spectrum of opal-Bi;;SiO,, system at 0 = 0°.

Transmission, a.u.

Wavelength, nm

Fig. 2. The transmission spectra of initial opal (curves 1 in both parts) at = 7" and the same opal
filled with KH,PO, after one (2) and two (3) soaking cycles.
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Raman spectra of the obtained nanocomposites demonstrate clearly the crystalline
state of embedded dielectrics in the opal pores (Fig. 3 - 5). According to results of our
previous study, one can exclude an admixture of initial opal Raman spectrum from the
further consideration. The reason for this is that the intensities of wide diffuse bands in its
Raman spectrum are very small compared with those in the powder and nanocomposite
spectra. We can also neglect the influence of photonic stop-band as it is situated far from
the studied spectral region. The most features of Raman spectra of the obtained
nanocomposites in comparison with the spectra of corresponding polycrystalline powder
are the following: 1) an appearance of new bands; 2) a spectral redistribution mostly
within a low- and medium-frequency range; 3) a total enhancement of Raman spectrum in
case of nanocomposites.
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Fig. 3. Raman spectra of polycrystalline powders of Bi;;SiO, (1a), Bi;;GeO,, (1b) and nanocrystals of
Bi;,S10, (2a), Bi;;GeO, (2b) in opal pores.
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Fig. 4. Raman spectra of a-TeO, polycrystalline powder (1) and TeO, crystals in opal pores (2).
The spectra are correspondent to the same quantity of tellurium dioxide in the excitation volume.
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Fig. 5. Raman spectra of “opal - PbsGe;0;,” system from different volumes of sample (1 - 4) and
single PbsGe;0y; crystal (5).

Let us consider the reasons for these features by using the opal-tellurium dioxide
Raman spectrum as an example. An appearance of new bands may testify the changes in
crystalline structure. It is really, the frequencies of new bands appeared in opal-tellurium
dioxide Raman spectrum (Fig. 4), except for a 51 cm™ band, are well coincident with the
majority of bands frequencies in the y-TeO, spectrum [6]. Thus, one can conclude that
both a-phase and y-phase are formed in tellurium dioxide crystals grown into synthetic
opal pores. As for a 51 cm™ band, which is absent in the spectra of both crystalline
phases, its appearance may be connected with the folding up of acoustic phonons branch
by decreasing the Brillouin zone for TeO, nanocrystals in opal pores. The spectral
redistribution within a 100 — 180 cm™ range is probably due to the appearance of new -
TeO, band at 142 cm™ which enlarges the total intensity within a 140 — 180 cm™ range.

The total enhancement in Raman spectra of the obtained nanocomposites can be
explained by multiple reflections of exciting photon from disordered elements in
synthetic opal structure which result in increasing a temporal interval of radiation-
substance interaction.

Secondary emission spectra of the obtained nanocomposites

The obtained active matrix nanocomposites may be involved in the process of the
optical radiation conversion due to their emission properties. The spectrum conversion
into the volume of these nanocomposites occurs in processes of famous optical
phenomena, such as photoluminescence and spontaneous parametric down-conversion.

In photoluminescence spectrum of the opal-Bi;,S10,¢ system a “red” shift of the
luminescence band and an essential increase of integral intensity are observed in
comparison with that spectrum of single Bi;,SiOy crystal (Fig. 6).
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Fig. 6. Spectral shape of the 407 nm exciting line (1), photoluminescence spectra of single Bi;,SiO;
crystal (2) and of opal-Bi;,SiO,, system (3) with the spectral response of the typical Si solar cell (4).
The photoluminescence spectra are correspondent to the same Bi;;SiO,, quantity in the excited volume.

The reason of shift is most probably the rebuilding of the Bi;,Si0,, energy spectrum
under restricted volume conditions. The total intensity enhancement is caused both by the
Bragg reflection of photons by system of the {111} planes at the larger incident angles
with the following output along the [111] direction and by increasing a temporal interval
of radiation-substance interaction due to the multiple scattering of light into
nanocomposites volume.

The secondary emission spectra of the opal-KDP system under different excitation
are presented in Fig. 7.
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Fig. 7. The secondary emission spectral of the opal - KDP system under a 532 nm laser excitation (1)
and a 400 nm LED excitation (2).

In both cases, we obtained a wide emission band within a 480 — 600 nm range. The
emission intensity decreases within a stop-band region but it does not vanish completely
because of the existence of point defects and structural disordering in photonic crystals.
Basing on our previous study of nonlinear-optical photonic crystals [7], we assign this
emission to the spontaneous parametric down-conversion.
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Spontaneous parametric down-conversion is a process of spontaneous disintegration
of pump photons (%w,, k,) into pairs of signal (%iw;, k) and idler (%w;, k;) photons. As this
process is a second-order nonlinear process it occurs in media with no inversion
symmetry. For spatially non-uniform media with regular structures (photonic crystals) a
periodic modulation of linear and nonlinear susceptibilities should be considered in
general case. By taking into account the ® periodic modulation the bi-photons spectrum
should be determined by an additive sum of single harmonics of x* susceptibility. In
contrast to parametric down-conversion spectrum of spatially uniform sample the bi-
photon field spectrum of photonic crystal should be broadened, and the interference
effects may appear in its spectral intensity distribution. Spontaneous parametric down-
conversion intensity per a unit angle and spectral interval is determined by the value of
quasi-synchronism 4,, for the m-th order nonlinear diffraction. In case of 3D synthetic
opal photonic crystals this magnitude is defined by the structure disordering degree, the
nonlinear substance filling factor and by the existence of polydomain structure which
forms additional superlattice. In our samples typical domain size was about of 70 mkm.
Then the phase quasi-synchronism condition becomes true for the greater number of
directions and wavelengths.

Conclusions

The technology of embedding active dielectrics into opal pores has been worked out.
Active dielectrics have been found to be in the nanocrystalline form. In some cases it is
possible the formation of metastable phase. The essential shift of Bragg reflection band
towards infrared spectral region has been obtained. In nanocomposites with nonlinear optical
dielectrics the multiphoton processes are observed. The effect of enhancement of secondary
emission in active matrix nanocomposites on the base of synthetic opals has been found.
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FABRICATION AND OPTICAL CHARACTERIZATION OF THIN SYNTHETIC
OPAL FILMS FOR DESIGNING COATINGS OF SOLAR CELLS

A method for the fabrication of synthetic opal films with a thickness of 20 - 30 layers is given.
Two methods for the characterization of synthetic opal thin films are described. The first method
consists in studying the Bragg reflections spectra by using a special fiber-optic microprobe. In the
measured spectra, together with the Bragg reflection peak, the presence of maxima due to thin film
interference was observed. The film thickness of the samples is calculated by the position of the
interference maxima. The second method is based on study of the laser diffraction on the structure of
the synthetic opal film. The observed diffraction pattern consists of the six intense reflections,
symmetrically located relative to the incident beam. The conditions for the observation of diffraction
are described. The relation between structural parameters and the wavelength of radiation is installed.
The peculiarity of the diffraction method is the ability to detect the defects related with the
multidomain structure. The spectroscopic and diffraction techniques together provide a complete set of
methods for the characterization of thin film opals.

Keywords: thin films of synthetic opals, Bragg diffraction spectra, laser diffraction, solar cells.

IIpuBoauTcs cnocod U3roTOBJICHHS MICHOK CHHTETHYECKOro onaJja c ToamuHoii B 20 - 30 cioes.
OnucpIBalOTCs 1Ba MeTOJa XapaKTepU3aluu TOHKHX IUIGHOK CHHTeTHYecKoro onana. IlepBrrii MeTosn
3aK/II04aeTcsl B HCCJIeIOBAHMM CIIEKTPOB OP3ITOBCKOr0 OTPakeHHs ¢ MCI0/1b30BAHHEM CHEIHATbHOI0
ONTHYECKOro BOJIOKOHHOT0 MHKPO30HJIa. B M3MepeHHBIX CIeKTpax, Hapsay ¢ MHKOM Op3rroBCKOro
OTpa:KeHHs1, HA0II0AAI0TC MAaKCHMYMbI, 00ycJIOB/IeHHbIe MHTep(depeHnueli B ToHkOoH Imuienke. Ilo
MOJIOJKeHHI0 MHTep(epeHINOHHBIX MAKCHMYMOB BBIYHCISIOTCH TOJIIMHBI IUJIEHOK HCCJIeTyeMbIX
o0pa3uoB. Bropoii Meron 0asupyercssi Ha HcCIeJOBAHHH AUPPAKLUUH Ja3ePHOI0 H3JIy4YeHUS HaA
CTPYKTYpe IUICHKH CHHTeTHYecKoro omajna. HaGmrogaemass kapTHHa AMQPAKUUU COCTOMT M3 IIECTH
HHTEHCHBHBIX pedieKcoB, CHMMETPHYHO pPAaCHOJIOKEHHBIX OTHOCHTEJIbHO MaJalollero mydkKa.
OnucepiBalOTCesl yca10BHsl HaOmiofeHusi Au(pPaKknuu. YCTAHAB/IMBACTCH CBA3b MeMXKIY CTPYKTYPHBIMH
napaMeTpaMH M JUIMHON BOJIHBI M3i1ydeHHsl. Oco0eHHOCTh TU(PPAKIMOHHOIO MeTo/1a 3aK./II04aeTcsl B
BO3MOKHOCTH  oOHapy:keHUs  JedeKTOB, CBA3aHHBIX ¢  IOJHIOMEHHOCTbIO  CTPYKTYpBI.
CnexTpockonuyeckuii M AH(PPaAKINOHHBIN MeTOAbl BMecTe 00ecneyrBaOT MOJHOLEHHBIH KOMILIeKC
METO/I0B /IISl XapaKTePH3aIUN TOHKUX IJIeHOYHBIX ONAJIOB.

KnawueBble ca0Ba: TOHKHE IUIGHKHM CHHTETHYECKHX ONAJOB, CIIEKTPbI Op3ITOBCKOW IU(paKIyH,
T paKIys JTa3epHOTO U3TyUSHUsI, COTHEUHBIE JIEMEHTHI.

HaBoauTbcesi cnoci0 BUTOTOBJIEHHS IUIIBOK CUHTETHYHOI0 onaJa 3 ToBmuHOK B 20 - 30 mapis.
HapgaeTbcs onmmc ABOX MeTOliB XapakTepu3anii TOHKHX IIiBOK CHHTeTHYHOro omnaja. Ilepmmii meTon
NOJIATA€ B AOCHIIZKeHHi CrieKTPiB OperriBcbKoro Big0UTTS 3 BUKOPHCTAHHSIM CeNiaJIbHOr0 ONTHYHOIO
BOJIOKOHHOT0 MiKpO030HAa. Y BHMIpSHUX CHEKTpPax, mopsig 3 MiKoM OperriBcbKoro BinoOpaskeHHs,
CHOCTepPiraloTbcsi MaKCHMYMH, 00yMoBJeHi iHTepdepeHuiclo y ToHKiH miaiBui. 3a moJiokeHHSIM
inTepdepeHniiiHIX MAKCHMYMIB 00YMCIIOIOTHCS TOBINMHM ILIIBOK JOCJALIKYBaHUX 3paskiB. Jlpyrumii
MeTo[ 0a3yeTbesi Ha AOCHIKeHHI Aupakuii JazepHOro BHIPOMIHIOBAHHA HA CTPYKTYpi ILIBKH
cHHTeTHYHOro omana. Crocrepe:kyBaHa KapTHHa Iu(paknii CKJIAZA€ThC 3 IIECTH iHTEHCHBHUX
pediexciB, CHMETPHYHO pO3TALIOBAHMX BigZHOCHO magalodoro mnydka. Hapmaernesi omme ymoB
cnocrepe:keHHs Augpakuii. BctaHoBII0€TbCS 3B'A30K Misk CTPYKTYPHHMH NapaMeTPaMH i J10B/KHHOI0
XBWIi BUNpoMiHIOBaHHs. Oco0iuBicTh JHdpakuiiiHOro MeToay MOJISITa€ B MOMK/JIUBOCTI BUSIBJICHHSA
aedekTiB, MOB'SA3aHUX 3 MOJiTOMeHicTIO cTPYKTYpH. CnekTpockoniunmii i audpakuiiinmii meroan
pa3oM 3a6e3nme4yyoTh NOBHOUIHHHIT KOMIIEKC MeTO/iB /ISl XapaKTepHu3alii TOHKHX IUTIBKOBHX ONAJiB.

Karo4oBi cioBa: TOHKI IUIIBKM CHHTETHYHUX OIAiB, CIIEKTPH OperriBcbkoi audpakuii, audpaxiis
JIa3epHOT0 BUIIPOMIHIOBaHHS, COHSYHI €JIEMEHTH.
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Introduction

A great interest in applying synthetic opals in designing solar cells is caused by the
following reason. These materials have the ability to convert the solar radiation spectrum
either by selection of a certain part of the spectrum or by conversion of radiation energy
(in the composite with luminescent materials, nonlinear optical materials, etc.). Currently,
most of the experimental works in the field of photonic crystal research are performed on
bulk synthetic opals. However, the presence of significant structural disorder in the bulk
samples obtained by sedimentation lays obstacles to the complete exploitation of the features of
their optical properties caused by photonic band structure. It is known [1] that film opals have an
improved structure. Moreover, the creation of large surfaces with film opals is easier to
implement.

In view of the above mentioned it becomes necessary to fabricate synthetic opals
with the small number of layers as well as to carry out their optical characterization.

Samples

The opal structure has a face-centered cubic (fcc) lattice formed by hexagonal
closely packed layers of monodisperse SiO, globules. Synthesis of silicon dioxide
globules was carried out by modified Stober method [2]. Opal films were grown by
vertical pulling of quartz or glass substrate from suspension of nanodisperse silica
globules with middle size of about D = 280 nm. Speed of pulling was about of 100 nm/s.

In this case, under action of surface tension forces of particle suspension, globules
were stacked in a uniform layer. Such method, as experience shows, is the most effective
and occupies much less time than the method of film growing in a region of moving
meniscus by liquid evaporation from suspension [1]. The obtained samples were dried up
during a day at room temperature with the subsequent annealing at T = 480 °C.

Experiment and results

Characterization of samples means the determination of their structural parameters
(diameter of globules and interplanar distance). For this purpose, the Bragg diffraction
spectra in the reflected beams have been measured. According to the Bragg law, a
spectral position 4, of the reflection peak is connected with the interplanar distance d

T (0) = 2dx ¢ — sin® 0

where 6 is an incident angle of light beam on the system of the {111} planes,
Eop =0.74- €510, +0.26-¢ is an effective dielectric constant; g, is a dielectric

as follows

pore

constant of SiO, globules, ¢ is a dielectric constant of the substance into pores (for

pore

the composition of substances the dielectric constant also will be effective). The
connection between the globule diameter D and the interplanar distance d along the [111]

direction is given by the ratio D=d - f* where f =,/3/2 for fcc lattice.

To measure the Bragg diffraction spectra a special optical probe shown in Fig. 1, a
was used. In the probe scheme the light was gathered to the optical concentrator 2
through the fiber bundle /, and then light was incident on the sample 3 at angle §. The
reflected from the sample surface light was gathered to the fiber 4 at the same angle.
The spectra were registered with using a modified spectrometer based on a double
monochromator DFS-12.
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One of these spectra is shown in Fig. 1, b. The spectrum has a characteristic peak at
630 nm, its position is determined by the above described Bragg law. Thus, the structural
parameters of the opal sample can be determined from the spectral position of the peak.
Along with the Bragg diffraction spectra the interference maxima marked in Fig. 1, b as
m (maximum position coincides with the Bragg diffraction peak), and m+1, were able to
register. The presence of these maxima is caused by the phenomenon of interference in
thin films. The thickness of the film ¢ is determined by the position of these maxima 1,

and 4,,,, in such a way
t=12n,5 (1 Ay =1/ 4,,)

where n,; is an effective refraction index. For investigated samples the film thickness is

in the range from 2 um till 4 um.

0,75

0,60 m+1

Reflection, arb. un.

T T T T T T
500 550 600 650
Wavelength, nm

Fig. 1. Measurements of Bragg diffraction spectra. a — optical probe scheme; b — Bragg diffraction
spectrum measured with the optical probe.

Investigation of the light diffraction in synthetic opals is also an important method
for the characterization of opal films [3, 4]. To describe the laser radiation diffraction on
the synthetic opal structure, the widely known approach developed by Laue [5] and used
for describing the X-ray diffraction in ordinary crystals is applicable.

The observed diffraction pattern was characterized by symmetry Cys and consisted of
six intense reflections, symmetrically located relative to the incident beam (see Fig. 2, a).
An optical scheme used to observe the diffraction is shown in Fig. 2, b. For this scheme,
one DPSS and two semiconductor lasers with wavelengths of 4,,,=532 nm, 4,,, =407

‘green
nm, and A4,,,=635 nm, respectively, were used. The beam was oriented along the [111]

direction, normal to the film surface.
As known in this geometry not for every wavelength and the incident beam
orientation the diffraction can be observed. Condition for the occurrence of diffraction is

ik =G

where k, and k are the wave vectors of incident and diffracted beams and G is the
reciprocal lattice vector. This condition is equivalent to the set of equations:
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Fig. 2. Experiment on observation of diffraction. a — diffraction pattern; b — optical scheme of the
experiment of the laser beam diffraction in the opal film.
1 - laser; 2 — lens; 3 — sample; 4 — screen; 5 — camera.

dingy =(cosa—cosagy)=mi

dyngg =(cos f—cos By )=myA;
dsngy =(cosy —cosy, )=msi;

where d,, d,, and d; are periods of nodal lines forming a certain system of coordinates,

in general, oblique. The beam incident to the origin of the coordinate system will form
angles a,, By, yo with its axes, while the diffracted beam forms angles a, £, y. For

each wavelength, and orientation of the incident beam in respect to the sample, an own
coordinate system for the implementation of diffraction will be determined. It is possible
to find the relation between D and A. Using also the geometric condition

cos? a +cos? B +cos® y=1 and assuming m; =m, =msy =1, we can obtain

1 (fE+f5+17) D

I’lezﬁ’ (flcosa0+fzcosﬂ0+f3cosy0)’ l di‘

A
2

The table below gives the values of the angles and f; for which the diffraction is
possible in this experiment. The calculated values of D are also given.

Table
Values of angles and f; for which the diffraction is possible, D - the calculated size of the globules
A, nm 06070 /30»0 700 Nl /o f3 D, nm
407 90 90 30 | 1/43 1 1 295
532 90 45 45 1 N2 | N2 | 286
635 90 30 30 1 1 1 296

Characterization with using this method provides a great opportunity to analyze the
quality of the sample. Defects and the overall disorder of the structure directly affect the
diffraction pattern. The character of distribution and brightness of diffraction reflexes in
the obtained diffraction patterns were various in some different sites of the sample. This
fact testifies a polydomain structure of the film (Fig. 3).
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Fig. 3. The diffraction patterns obtained in sample sites, where the structure disruptions occur.

Conclusions

Two methods for the characterization of synthetic opals are described. The
spectroscopic method has shown the presence of interference in a thin film along with
Bragg diffraction. The conditions of the laser diffraction occurrence in performed
experiments were identified. It is found that the diffraction method, as a method for
characterization, gives also the information about the types of defects. Together, these
methods provide an indispensable instrument for the characterization and analysis of thin
coatings based on synthetic opals.
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X-RAY MICROANALYSIS OF Fe(B,C)-BASED SOLID SOLUTIONS

The structure and properties of FeB-based solid solutions of Fe-B-C alloys cooled
within the range of crystallization rates from 10 to 10° K/s are investigated. The solubility of
Mn, Cr, V, Ti, Si, Al, Ni, Cu, Mo, or Nb in Fe(B,C) phase is estimated using X-ray
microanalysis. The crystallization of this phase is established to proceed either from the
liquid or under peritectic reaction depending on alloying element added. The existence of two
polymorphic modifications of iron monoboride with transition temperature at about 1398 K
is confirmed. The elements which additions allow increasing hardness and decreasing
brittleness of Fe(B,C)-based solid solutions are determined. The change of the structure and
properties of the phase caused by the increase in a cooling rate up to 10° K/s is described. The
brittleness of Fe(B,C) crystals lowers with decreasing quantity of the electrons taking part in
the electron exchange and weakening “boron-boron” and “metal-boron” bonds of the phase
crystal lattice while the iron atoms are substituted by the atoms of alloying elements.

Keywords: iron monoboride, alloying elements, solid solutions, dendrite parameters,
electron structure, microhardness, brittleness.

HccaeaywTesi CTPYKTYpa M CBOMCTBAa TBepAbIX pacTBOpoB Ha ocHoBe Gopuaa FeB B
cniaaBax Fe-B—C, 3akpuCTa/JIN30BAHHBIX B HHTEpPBajle CKOPOCTel OXJazKIeHHs 10-10° K/c.
PacrBopumocts Mn, Cr, V, Ti, Si, Al, Ni, Cu, Mo uau Nb B ¢a3ze Fe(B,C) onpegeasiercs ¢
HCIO0JIb30BAHMEM PEHTIeHOCHEKTPAJbHOIO0 MUKPOAHAIN3A. YCTAHOBJIEHO, YTO B 3aBHCHMOCTH
OT COCTAaBa JIETHPYIIIHX J00aBOK KPHCTAJIM3ANMA 3Toii ¢a3bl MOMkKeT NPOTEKaTh KakK
HeNnocpeJCTBEHHO M3 ’KMAKOCTH, TaK W MO NepuUTekTHYeckoil peakmuu. IloaTBepxkmaercs
CylecTBOBaHHE JABYX MOJUMOPHBIX Moaudukanuii MoHoOOpHIA :Keje3a ¢ TeMiIepaTypou
nepexoga 1398 K. Omnpenensilorcsi 3JjieMeHTbl, BBeJeHHE KOTOPBIX MO3BOJsieT YBeJHYUThH
TBEPAOCTh U YMEHBIIMTH XPYNKOCTh TBEepPAbIX PACTBOPOB HAa OCHOBe MOHOOOpHAA :KeJie3a.
OnuceiBaeTcsi U3MEHEHHE CTPYKTYPbl M CBOHCTB ¢a3, BHI3BAHHOE YBEJIHYEHHEM CKOPOCTH
oxaaxaenns 10 10° K/c. Tlokaszano, 4To cHHKeHHe XPYNKOCTH TBEPABbIX PACTBOPOB HA OCHOBE
Fe(B,C) npu 3aMeleHHM aTOMOB :Kejie3a aTOMAMHU JIETHPYHIIMX 3J1eMEHTOB CBS3aHO ¢
YMeHbIIEHHEeM KOJHMYeCTBA 3JeKTPOHOB, YYAaCTBYWIIUX B 3JeKTPOHHOM oOMeHe, H
ociadaeHneM cBsi3ell «00p—00p» U «MeTaAI-00pP» B KPHCTAJJINYECKOi pemeTke (a3pl.

KiaroueBble cjoBa: MoOHOOOpPHJ Kele3a, JETHPYIONIUE D3JIEMEHTH, TBEpIbIe pPacTBOPHI,
JICHAPUTHBIE TapaMeTPhl, 3IEKTPOHHOE CTPOCHUE, MUKPOTBEPAOCTh, XPYIIKOCTb.

JocaiakyoTbesi CTPYKTYpa Ta BJACTHBOCTI TBepAUX pPo34uHiB Ha ocHOBi Gopuna FeB y
cnaaBax Fe-B-C, zakpucrajizoBanux B iHTepBaJi IIBHAKOCTEH 0XO0JIOJKEHHS 10-10° K/c.
Po3uyunuicts Mn, Cr, V, Ti, Si, Al, Ni, Cu, Mo a6o Nb y ¢a3i Fe(B,C) Busnauaerbca i3
3aCTOCYBAaHHSIM MeTOAY PEHTTeHOCNMEeKTPaabHOro MikpoaHanidy. BcraHoBiieHO, IO 3aJe:KHO
Bil cKJany Jeryw4ux JAoMilIoOK Kpucrtatgidanis uniei ¢a3sm Moxe BigdyBaTtuca K
0e3mocepeHbO 3 PiAMHHU, TaK i 32 mepUTeKTUHYHOIO peakuicro. IlinTBepaAKy€eEThCS iCHYBaHHS
ABox moJiMoppHux moaudikaniii monodopuaa 3aniza 3 Temmepartypor mnepexoay 1398 K.
BuzHayaTbesl eJleMEeHTH, J0AABaHHA SIKUX A03BOJsI€ 30iNbIIMTH TBepAicTh i 3MeHIIUTH
KPHXKICTh TBepAMX PpO34YHMHIB Ha OCHOBIi MomHoGopuaa 3axiza. Hanaerscsa omme 3MiHuM
CTPYKTYPH Ta BJjacTHBOcTell ¢a3, cnpuYuHeHy 30i1bIIeHHIM MBHUAKOCTI 0XO0JI0AXKEHHA 10 10°
K/c. Iloka3aHo, 0 3HHMKEHHSI KPHXKOCTI TBepaux po3uuHiB Ha ocHoBi Fe(B,C) y pasi
jaMilleHHs aTOMIB 3aJjii3a aToOMaMH JIeryWYHX eJIeMeHTiB NoB’si3aHe 3i 3MeEHIIEHHAM
KIJIBKOCTI eJIeKTPOHiB, 0 OepyTh Y4YacTbh B eJeKTPOHHOMY OOMiHi, Ta mocJia0JieHHAM
3B’A3KIiB «00p—00p» i «<MeTan—0op» y kpuctadivuiii rpatui ¢pasu.

Kaw4voBi cjaoBa: moHOOOpHI 3ani3za, JErylodi €JIEMEHTH, TBEPAi PO3YHHHU, ACHIPHUTHI
napaMeTpH, eIeKTpoHHa OyaoBa, MiKPOTBEPAICTh, KPUXKICTD.
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Introduction

Fe—B-C alloys for industrial applications can be successfully utilized since the
alloys have sufficient thermal stability to resist oxidation, corrosion, abrasive wear at
elevated temperatures [1, 2]. Strengthening is accomplished through structure stabilization by
Fe(B,C) crystals appearing in the high boron iron alloys. However, under impact loads
these alloys become inadequate because of their low resistance to cracking. It results in
the loss of the valuable properties and severely limits the high temperature characteristics
of the alloys restricting their use in critical applications. Recent results have indicated that
the alloying of the Fe(B,C) crystals not only influences their morphology, but also
significantly reduces their brittleness [3—6]. To obtain a high-quality coatings based on
Fe-B-C alloys with good comprehensive mechanical properties, it is important to be
aware of their microstructure. X-ray microanalysis is one of the main methods of
studying crystal structure. Since only a few studies have been carried out and are in some
aspects contradictory, especially in the alloyed Fe-B—C system, experiments were
initiated to determine the effect of alloying elements on the structure and the properties of
Fe(B,C)-based solid solutions.

Experimental procedure and results

The chemical composition of Fe—-B—C alloys, determined by chemical and spectral
analyses, has been within the composition region 10—14 wt. pct. B, 0.1-1.2 wt. pct. C,
0-5 wt. pct. M (where M — one of the following elements: Mn, Cr, V, Ti, Si, Al, Ni, Cu,
Mo, or Nb), Fe — remainder. The specimens have been prepared by melting the
constituent elements of high purity in a resistance furnace and solidified by cooling in air.
X-ray diffraction with CuK, radiation and high resolution scanning electron microscopy
(SEM) using a field emission gun Jeol-2010 F equipped with an energy dispersive X-ray
link system, operating at 200 kV, have been employed to characterize the phases.
Microhardness (#,) and critical stress intensity factor (K;c) of Fe(B,C)-based solid solutions
have been estimated by means of PMT-3 device from the following relationships

1854P
H, =—5, (1)

0,15k(2¢/d )=/
Ko == - HAd/2,F=3k=32 2)

where d — diagonal length of hardness indentation, m; P — load, N; ¢ — brittle fracture
zone radius, m; H — Vickers hardness, MPa.

The structure and the properties of Fe(B,C)-based solid solutions have been
investigated in the range of cooling rates from 10 to 10’ K/s. The solid solution Fe(B,C)
arises on the base of FeB iron boride and grows in the form of three-dimensional
dendrites (Fig. 1,a). Under the quenching from the temperatures of 1653—1443 K in the
Fe(B,C) dendrites the dark and the light twin bands are revealed after etching.
Deformation by the twinning is a primary mechanism of plastic flow of metal with a
close-packed lattice. Therefore it may be assumed that at the elevated temperatures the
crystals of Fe(B,C) possess not the rhombic (a-modification) but more close-packed
lattice (B-modification). The results of thermal analysis also show the possibility of
polymorphic transformation B-Fe(B,C)—a-Fe(B,C). The weak thermal effect registered
may be related with heat production in consequence of polymorphic transformation.
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The following changes have been observed after alloying the Fe(B,C) crystals with
the elements specified above. X-ray microanalysis shows that within the investigated
range of cooling rates Mn, V, or Cr dissolve in the phase in noticeable quantities, while
the solubility of Ti, Si, Al, Mo, Nb, Ni or Cu is insignificant or practically absent (Fig. 1).

Manganese dissolves in the iron monoboride to the full (Fig. 1, b), critical stress
intensity factor K¢ of the phase increasing (Table). This element slightly decreases dendrite
parameters of alloyed Fe(B,C) crystals. Vanadium dissolved to the amount of 2—5 wt. pct.
gives rise to the non-homogeneous structure of the Fe(B,C)-based solid solutions (Fig. 1, c).

Fig.1. SEM images (x400) of Fe(B,C)-based solid solutions taken in: a — secondary electrons; b — MnK_;
¢ — VKg; d - CrKg; e — TiKy; f— SiKg; g — AlIKy; h — NiKy; i — CuKg; j — MoLy; k -NbL,
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A light needle-like phase is clearly seen in the dendrite interior. X-ray microanalysis data
indicate this phase to be FeB, boride. It can be assumed that the first solid phase forming
from the liquid has the composition FeB,. Then the peritectic reaction L + FeB, — Fe(B,C)
takes place. Cooling through the peritectic temperature causes a type of nonequilibrium
structure called surrounding. This nonequilibrium structure appears because there is not
enough time for peritectic reaction to go to completion, and not all the liquid is consumed
by reacting with FeB, to produce Fe(B,C) crystals. Instead, part of the liquid solidifies to
produce a structure consisting of the phase of FeB, surrounded by a shell of Fe(B,C).

Alloying with vanadium does not practically change dendrite parameters of Fe(B,C)
phase but significantly enhances the critical stress intensity factor K;c (Table). The
dissolution of chromium in Fe(B,C) crystals is complete, as illustrated in Fig. 1,d. This
element causes the largest increase in the plasticity of the phase slightly decreasing its
dendrite parameters.

Titanium added to the iron monoboride dissolves in the dendrites insignificantly.
Only traces of the element are revealed by X-ray microanalysis as small but noticeable
background (Fig. 1, e). Consequently, at the boundaries of iron monoboride the numerous
light crystals of TiC are seen in the SEM micrographs. For all that, the increase in
microhardness /, and the decrease in critical stress intensity factor K¢ tend to be more
marked while the dendrite parameters remain practically unchanged (Table).

The additions of silicon, aluminum, or nickel dissolve in the dendrites of Fe(B,C) in
negligible quantities (Fig. 1, f~h). In the SEM micrographs Fe(B,C) crystals look dark.
The studies indicate the presence of SiC, AlB,C, or Ni,B crystals, respectively, at the
Fe(B,C) boundaries. Therefore, alloying with these elements does not essentially
influence dendrite parameters (Table). Similarly, copper produces globular inclusions at
the dendrite boundaries, as seen in Fig. 1, i.

Table
The influence of alloying elements on the dendrite parameters and the properties of Fe(B,C)-based
solid solutions

Alloyin Dendrite parameters, muy* H,, GPa** KIC,MPa-m” ok
cooling rate, K/s cooling rate, K/s cooling rate, K/s
elerient 10 10° 10 10° 10 10° 10 10°
dy Iy dy Iy
w/0 29.9 33.1 4.9 5.2 17.1 19.0 2.3 4.5
Mn 29.0 31.3 4.6 4.8 17.2 19.3 3.5 —
\% 29.8 33.1 4.4 4.8 17.0 19.1 3.6 —
Cr 28.4 31.9 4.1 4.3 16.5 18.6 3.8 —
Ti 29.6 32.9 4.7 5.0 18.2 20.5 1.8 4.7
Si 29.1 31.1 4.6 4.9 17.9 20.0 2.2 5.1
Al 28.7 324 4.5 4.8 17.9 19.9 2.0 53
Ni 28.6 32.0 4.2 4.5 17.4 19.8 2.4 5.2
Cu 28.9 32.2 4.3 4.6 17.7 20.1 2.3 5.0
Mo 23.6 27.2 3.1 3.6 17.7 20.0 2.1 —
Nb 22.4 343 2.4 2.8 17.8 20.2 2.1 5.9

* dy — diameter of dendrite branches of Il order; /, — spacing between the dendrite
branches of 11 order, both accurate + 2 pct.;

** —accurate up to 1-3 pct.;

*** _ accurate up to 3—4 pct.;
case of no cracking

[T

indicates the impossibility to determine K¢ in

79




X-ray microanalysis of Fe(B,C)-based solid solutions

The dendrites of Fe(B,C) alloyed with molybdenum and niobium do not yield any
significant changes in the structure. Only negligible content of these elements is revealed
by X-ray microanalysis (Fig. 1,],k). Correspondingly, the light crystals of Mo,B, Mo,(B,C),
or NbB, are seen at the Fe(B,C) boundaries. Molybdenum and niobium cause substantial
reduction in dendrite parameters, as shown in Table. In this case the microhardness and
the critical stress intensity factor are not influenced.

The increase in a cooling rate up to 10° K/s brings about a significant increase in the
microhardness and the critical stress intensity factor of Fe(B,C)-based solid solutions (Table).
The results of alloying elements influence on dendrite parameters and micromechanical
characteristics prove to be similar to those obtained for alloyed Fe(B,C) crystals cooled at the
rate of 10 K/s. And what is more, not only manganese, chromium, or vanadium, but
aluminum, molybdenum, or niobium as well reduce brittleness of Fe(B,C) phase, most likely
because its crystals become smaller. Thus, the brittleness of Fe(B,C)-based solid solutions is
dependent on alloying, with higher cooling rate giving rise to a higher Kjc..

The results obtained can be explained by the peculiarities in the structure formation
of Fe(B,C)-based solid solutions. The stability of Fe(B,C) crystals depends on B-B and
Fe—B bonds energy. The strength of these bonds is determined by the distraction of
collectivized valence electrons of iron [7]. The ions of such elements as Mn, V, Cr, Mo,
or Nb have p°-shells and form with boron the same valence bonds like the atoms of iron.
As a result of substitution of iron atoms by the atoms of Mn, V, or Cr the fewer electrons
take part in the electron exchange. The B-B and the Fe-B interactions weaken and
therefore the microhardness and the brittleness of the solid solutions are found to
decrease. The reverse is true for titanium. When alloying with this element, quantity of
non-located electrons tends to increase. It causes strengthening above all the B-B bonds
and, accordingly, gives rise to higher microhardness and brittleness of (Fe,Ti)(B,C) crystals.

Aluminum and silicon are sp-elements, whereas nickel or copper atomic
configurations tend to the stable d’-states. It makes difficult the delivery of electrons and
imposes restrictions on the electron exchange. Therefore the atoms of Al, Si, Ni, or Cu do
not practically substitute for the iron atoms in the Fe(B,C) lattice. When dissolving, these
elements are most likely able to form the metal-metal (M—M) bonds. In the electron
exchange, some electrons of iron localized in the d'’-states pass over to the d’-states with
the energy gain. It causes strengthening M—M bonds and weakening Fe-B bonds in the
lattice of the crystals. Taking into account the negligible dissolution of these elements and
small contribution of the above bonds in the bond energy balance their insignificant
influence on micromechanical properties stands to reason.

The probability that molybdenum and niobium valence electrons are localized in the
stable d’-configurations is high. That is why these elements are electron acceptors. Any
redistribution of electrons in such system will result in the energetically non-
advantageous destruction of the stable configurations. Therefore the solubility of
molybdenum and niobium in Fe(B,C) crystals is negligible and they do not affect the
micromechanical properties.

Conclusions

Alloying of Fe(B,C)-based solid solution with manganese, chromium, or vanadium
can be recommended to lower the brittleness of the phase. As the results of X-ray
microanalysis show, the effect can be achieved due to a high solubility of the above
elements in Fe(B,C) crystals. Their atoms mainly substitute for the iron atoms in the
Fe(B,C) lattice, this leads to weakening “metal-metal” and “boron—boron” bonds of the
solid solutions.
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The negligible dissolution of titanium, aluminum, silicon, nickel, copper,
molybdenum, or niobium in Fe(B,C) crystals is responsible for the appearance of new
phases based on these elements at the Fe(B,C) boundaries. The results can be explained
by electron structure of the alloying elements that do not supply necessary electrons for
the electron exchange and do not influence the properties of Fe(B,C)-based solid
solutions.
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HYDROGEN ABSORPTION-DESORPTION ISOTHERMS IN MAGNESIUM
INTERMETALLIC COMPOUNDS

A statistical theory of hydrogen absorption-desorption in the system CeMgCo.-H, was developed.
The values of free energies of the two phases formed by dissolving hydrogen in a crystal CeMgCo, both
CeMgCosH, and CeMgCo,Hg were calculated. The calculation was carried out using simplifying
assumptions: the crystal lattice was assumed geometrically ideal, the interatomic interaction only for the
nearest atom pairs was taken into account, and the correlation in the substitution position of the lattice
atoms was not taken into account. The thermodynamic equilibrium conditions of these phases were
determined. The minimizing of the free energy, which determines the equations of thermodynamic
equilibrium, allowed studying the hydrogen sorption of crystals at different temperatures. The possibility
of occurrence of the hysteresis effect, which disappears with increasing temperature, was shown. The
absorption-desorption isotherms close to the real ones were obtained, and the appearance of these curves
at the phase transition temperatures was explained. The calculations show that the experimental study of
the sorption isotherms of hydrogen in the crystals can allow their mind to reveal the presence or absence
of phase transformations in the system, as well as a possible phase transition temperature, if any.
Comparison of experimental and calculated isotherms showed their similar nature.

Keywords: hydrogen sorption, isotherms, intermetallic compounds.

PaszpaGorana craTucTHYeckasi TeopHusi Ipolecca adcopOuuu-gecopdéuuu BOJOpPOJa B cHCTeMe
CeMgCo4-H,. Paccuutanbl cBOOOIHBIe JHepruu JBYX a3 CeMgCoH, m CeMgCoyuHg,
dopmupyrommuxcsi npu pacTBopeHuH Boaopoaa B kpucramie CeMgCo,. Pacyer mnposoamiicsi ¢
YHPOIAIONIMMH TMPeNOI0KEHHsIMH: KpHCTAUIMYecKas pellleTKa TNPHHUMANIACH TeoMeTpPHYecKH
HAeallbHOH, Me:KaTOMHbIe B3aMMOJEHCTBHSI YUHTBHIBAIMCH TOJIBKO s OJMKAMIIMX aTOMHBIX map,
KOppe/siusi B 3aMelleHHMHM NO3WIHUIi pelleTKH aTOMaMH He Y4HMThIBajack. OmnpeseneHbl ycJ0OBUS
TepMOAMHAMHMYECKOr0 paBHoBecus ¢a3. MuHuMH3anusa CBOOOAHBIX DJHEPruii, ompegesomas
YPaBHEHHS] TEPMOAMHAMHYECKOr0 PABHOBECHS, IO3BOJIHJIA H3YYHTh BOJOPOJHYIO COPOIHOHHOCTH
KPUCTA/LIOB /UISl Pa3HBIX TeMIepaTyp. YCTAHOBJIEHA BO3MOKHOCTH MOSIBJeHHSI THCTEPE3NCHOIO
3¢ dexTa, KOTOpHIH HcYe3aeT ¢ MOBBIMEeHHeM Temmepatypsl. IlocTpoeHbl 0H3KHe K peaJbHBIM
H30TepMbI, 00BSICHEHO TOSIBJIeHHe HAa HHX M3rM00B B TOYKax (pa3oBoro mepexona. BouimoaHeHHBI
pacyeT MNOKAa3bIBaeT, YTO 3KCIHEPHMEHTAILHOE MCCIe0BaHHEe H30TepM BOJOPOAHOI copOuuH B
KPHCTA/IaX IO03BOJsIeT N0 WX BHAY BBISIBUTh HAJW4YHe WJIM OTCYTCTBHe B cHcTeMe (a30BbIX
npeBpalleHuii, a TakKe oNpefeJUTh BO3MOKHYIO TeMIepaTypy (a3oBoro nepexoja npu ero HaJH4Hu.
CpaBHeHHe IKCIIEPUMEHTAJIbHBIX H PACUeTHBIX H30TePM MOKA3aJI0 HX CXOAHBII XapakTep.

KuoueBble c10Ba: BOJOPOIHASI COPOLHS, H30TEPMBbI, HHTEPMETAILIN/IBL.

Po3po0iiena craTucTu4Ha Teopis mpouecy adcopouii-gecopoduii rinporeny B cucremi CeMgCo4
H,. Po3paxoBani BinbHi eHeprii n1Box ¢a3 CeMgCo,H, i CeMgCo,Hg, 10 popMyHOThCS NIPU PO3YHHEHHI
BoAHIO B KpucTaldi CeMgCo, Po3paxyHOK BUIBLHMX eHepridi mMpoBOAMBCSI 3 BHKOPHUCTAHHSIM TaKHX
CIPOIeHb: KPHUCTATIYHA PpeliTKa BBaXKAJACh I'eOMETPUYHO iealbHOI, MIXKATOMHI B3aemonii
BPaxoOBYBAJIMCS TIIbKH JJISl HAHOJIMKYMX aTOMHMX Nap, Kopejsiuis B 3aMillleHHi mo3uumiii pemiTku
aToMaMU He BpaxoBYyBaJjiacb. Bu3HaueHo yMoBH TepMoamHaMiuHOi piBHoBaru ¢a3. Minimizauisn
BIIbHUX eHepriii, sika BHU3Ha4yaja PiBHAHHA TePMOAMHAMIYHOI pPiBHOBAru, [103BOJIMJIA BHBYHTH
copOuiiiHicT, KPHUCTAJLIB 0 BOAHIO NpH pisHUX Temmeparypax. Iloka3zaHa MoIUBICTB ricTepesucHOro
edekTy, IKUil 3HMKa€ 3 migBuueHHAM Temuepatypu. IloGynoBani 6/m3bKi 10 peanbHux izorepmu i
MOsICHEHA MOsIBa HA HUX BUTHHIB B TOYKaxX ()a30BOro nepexoay. Bukonanuii po3paxyHok moka3sas, IO
eKCIIePUMEHTAIbHE NOCJIilKeHHs i30TepM copOuii riziporeHy B KpHcTajax [J03BOJSAIThL 32 BHIOM
i30TepM BHABHTH HasiBHiCTh a00 BiacyTHicTh B cucTeMi ¢a30BHX NnepeTBOpPeHb, 4 TAKOK BU3HAYUTH
MOKJIMBY TeMIiepaTypy ¢a3oBoro nepexoay 3a iioro HasisHocTi. I[lopiBHAIHHS pe3y/1bTaTiB pO3paxyHKiB
Ta eKCIepUMEHTAJbLHHUX i30TepM MoKa3a10 iX NoAi0HiCTD.

KuiouoBi cioBa: copOuis rinporety, i30TepMu, iHTEpMETaIIN.
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Introduction

New perspective intermetallic hydride materials that proved to be attractive (because
of their cheapness, non-toxicity, availability) for both the accumulation and storage of
hydrogen and for practical use as battery electrodes supply [1] have been recently
synthesized. Among the intermetallic compounds capable of absorbing hydrogen crystals
are Mg;MnNi,, MgsTiNiy, MgsAINi,, LaMgNi,, CeMgCo,4 and also other ones [2,3]. Their
hydrogen sorption capacity makes up 5.4 - 7.6 % weight of hydrogen.

Investigation of the kinetics of hydrogen absorption-desorption in CeMgCoq
compound showed that the system CeMgCos-H, demonstrates the formation of two
hydrides (deuterides): with a relatively small amount of hydrogen more stable a phase of
CeMgCo4H, is formed while with a higher concentration of hydrogen B phase of
CeMgCo4Hy is formed. In the process of absorption crystal lattice expands so that its
increase in volume makes 20%. Experimental absorption-desorption isotherms show
hysteresis effect (Fig. 1) [1]. Bends in the curves indicate the hysteresis loop for the
implementation of the phase transition o — f3.

P, bar

i |

50 +
40 +
30+
20 +
10 +
ol

Fig.1. Experimental absorption-desorption isotherms for CeMgCo,-H, system [1].

One may be interested in constructing the statistical theory for the hydrogen
sorption processes in the CeMgCo4-H, system, as well as ascertaining the conditions of
thermodynamic equilibrium during phases formation process and describing isotherms of
the process, identifying possible manifestations of the sorption hysteresis effect and the
impact of a — P phase transition.

Theory. The comparison with experiment

To achieve the objectives we have calculated free energies F; of hydride phases o =
CeMgCo4H, and B = CeMgCo,H; using the known formula [4-8]

F, = E, — kTInW, — kTN ;;In/, (1)

where i = a, B; E;— internal energy of the configuration for i-th phase, determined by the
sum of the energy of interatomic interactions, W; — thermodynamic probability of
distribution of atoms in a crystal on their positions, calculated according to the rules of
combinatorics, Ny — the number of hydrogen atoms in the crystal, A; — their activity, k& —
Boltzmann constant, 7 — absolute temperature.

The crystal structure of the intermetallic compound CeMgCo, is cubical. When
forming the a and B phases hydrogen atoms first form octahedra around magnesium
atoms, o phase occurs, aand further with hydrogen concentration increasing hydrogen
atoms begin to fill more lattice cavities, for example, centers of some of the planar
surfaces of the unit cell, B phase occurs. The lattice parameter equals to a = 7,501 A.
Hydrogenation (deuteration) of CeMgCo, crystal does not change the crystal lattice type,
but causes its expansion by 20%.
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The calculation of free energies has been performed using simplifying assumptions:
the crystal lattice was taken geometrically ideal, interatomic interactions were taken into
account only for the nearest atom pairs, correlation in substitution of atom positions in the
lattice was not taken into account, the dependence of the energy of interatomic
interactions on the hydrogen concentration was taken quadratic, the known dependence of
the activity of atomic hydrogen in the crystal on external pressure was applied

7\.1 = Gi pl/z (2)
where p — pressure; G; = const for each phase.

For calculation of internal configuration energy E; terms with the energies of pairs of
metals interaction are included in the constant term E, of this energy. Energy E; is
determined by the formula

E;=E, +Ncyucy t Nyguyy + Nggtgg N gty

where Ncy, Ny, Nxu, Ngy — numbers of the nearest atomic pairs CeH, MgH, CoH, HH
(or DD), a ucy, uym, Ukn, uyy — energy of their interaction.

Numbers of the nearest pairs of Ncy, Nyu, Ngr, Ny can be found via considering the
crystal lattice geometry. The unit cell of a phase contains four atoms of sodium and
magnesium and 16 cobalt and hydrogen atoms. The connection between MgH atom pairs
in octahedra is strong and short. CeH pairs exist at two distances 'cy and 7"cy. Distances
for the nearest atom pairs are r'cy =a / 232 = 2,652; 'y = a3’/ 4= 3248, ryy=a /4=
1,875; rim = a3/ 8 = 1,624; ryy = a | 2°* = 2,652. Indicating the number of atoms'
positions for metals Ce, Mg, Co as 6N, we get the number of Ce, Mg, Co atoms as N, N,
4N respectively. The numbers of positions of hydrogen atoms in o and B phases are,
respectively, 4N and 6N. Some of these positions are vacant. Let assume ¢ and ¢, to be
concentrations of hydrogen atoms and vacant positions.

Consider first a phase of CeMgCosHy (0 < x < 4). In this phase

c=Ny/4N=x/4, ¢,=1-c. 3)
Calculating the numbers of the next atom pairs gives in result
Ncn= New(r'cn) = 8N-c; N"cu= Neu(r" cu) = 4N-c;
Nur(rym) = 6N-c; Niu(rgn) = 8N-c; Ny(run) = 24N-¢".

With taking into account these formulas, the configuration energy £,

E, = E o +4N(20' cpp+ut" ey +3/ 20y + 2 gy + 6t gy ) - “4)
Thermodynamic probability ¥, defined by the formula

_ (4N)!
“ N,/(4N-N,)!

with using the Stirling formula In(X!) = X(In(X) — 1), which is true for large numbers X,
allows to obtain the natural logarithm

W, = 4NIn(4N) - NyIn(Ny;) - (4N - Ny)In(4N - Nyy). (5)

Substituting the expressions (4) and (5) in Eq. (1) with the formulas (3), we obtain
the free energy of a phase
F,=E, +4N{U,(c)+kT[clnc+(1-c)in(1-c)] — kTc), } (6)

2
where Ua = Uac + U'ac 5 Ua: 2u'CH +u”CH +3/2MMH + 2”1(1{ 5 U"a: 6uHH-
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Energies U, and U", depend on the hydrogen concentration due to the significant
expansion of the crystal lattice in the process of absorption. It increases the interatomic
distances and interaction energies of atoms are reduced by the absolute value. Generally,
this energy is determined by a fractional-rational function with polynomials of the fourth
degree of concentration of hydrogen in the numerator and denominator of the works [4, 5, 8].
In our particular case, this dependence can be simplified and supposed to be quadratic.
Thus, configuration energy E,, is of fourth degree of the hydrogen concentration.

The obtained formula (6) defines the dependence of the free energy of a phase on
the temperature, pressure (taking into account (2)), the concentration of hydrogen atoms,
their activity (G, coefficient) and energy parameters of the interaction of atomic pairs.

The equilibrium concentration of hydrogen is defined by the minimal free energy

OF, /0c=0. (7)

Substitution free energy F, (6) into the condition (7) with accepting the quadratic

dependence of the energies U',, U", on hydrogen concentration results in a formula
nP=2ln— ¢+ 1 ®)
G/(l-c) kT

where [,(c) = yoc3 + y‘cz +y'"c+ y*, and constants y,, v, 7", y* are defined via ucy, Unm, Uy, Unp.

According to (8), one can be calculate isotherms of hydrogen absorption-desorption
in CeMgCo,sHy crystal with determining the dependence of P on the hydrogen
concentration at different temperatures. Previously energy parameters yo, ¥, v", ¥ and G,
coefficient must be evaluated. This evaluation was performed using the experimental data
for the process of hydrogenation-dehydrogenation in CeMgCo4Hy crystal at temperature
equal 323°C (Fig.1). Evaluation showed that G, = 1 and the energy parameters are

Yo=4,16 €V, Y'=-6,24¢V, y'=2,08 ¢V, y* =0,01eV. )

Using the values calculated according to (8) the isotherms of hydrogen absorption -
desorption in CeMgCo,Hy crystal were plotted for different temperatures (Fig. 2). As one can
see, the graph has a certain degree of symmetry, so for /= InP the following relation is true

Aoy=r1-o). (10)
Moreover, we see the sorption hysteresis effect appearance. The hysteresis loop narrows
with increasing temperature, shortens and disappears.

There is no mentioned symmetry on an experimental graph (Fig. 1). Possible
explanation is following: at x > 3 (c > 3/4 x) the introduction of hydrogen atoms into the
crystal is more intensive, hydrogen atoms begin to fill not only vertices of octahedra, but
also other cavities of the crystal lattice, for example, the centers of the planar planes in the
cell unit with coordinates z = a/8, a/4, a/2, 3a/4, Ta/4. It leads to the significant expansion
of the crystal lattice and the implementation of the structural phase transition o — .

The structure of  phase (CeMgCo,H) is not yet clarified due to its instability. But it
can be stated that the free energy of this phase will be similar to the F, (6)

F,=E,, +6N{U,(c)+kT[clnc +(1-c)ln(1-c)] —kTci, |-

In B phase c =Ny/6N=x/6,0<c <1, 0<x=<6. The condition of thermodynamic
equilibrium (7) also results in equation, similar to (8)
C n Fﬂ (C) .
Gy(1-c) kT

InP=2In
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Fig.2. Estimated absorption-desorption isotherms of hydrogen in magnesium intermetallic
compound CeMgCo,H, according to (8) for the energy parameters (9) and for different
temperatures equal to k7 = 0.032, 0.036, 0.05, 0.06, 0.07, and 0.09 eV (curves a, b, ¢, d, e, f).
Dashed parts correspond to the unstable state of the system. Circles on the curves mark the
extreme points. Shaded area shows the sorption hysteresis effect. Coordinates c, x define
hydrogen concentration in the intermetallic compound: 0<c¢<1,0<x<4.
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Fig.3. Estimated isotherms of hydrogen absorption-desorption: a — in CeMgCo,Hy crystal at
0<x<4,Ga=1,Ta(c); b—in CeMgCo,Hx crystal at 0 <x <6, Goa = 0,1 and | I'B(c) | =
0,5 | Ta(c) | ;5 ¢ —in the system with a — f phase transition at x = 3. Shaded area
demonstrates the hysteresis effect.

Thus, due to the lattice expansion the absolute value of energy I's(c) is reduced in
comparison with [',(¢) and activity of hydrogen atoms decreases (activity characterizes
system energy changing simultaneously with changing number of hydrogen atoms
entering the crystal)
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As an example, absorption-desorption isotherms were constructed in the o and 8
phases in the case of Gg =0,1G, and | Ip(c) | =0,5 | I'y(c) | , which are shown in Fig. 3a, b.

According to Fig. 3b, the hysteresis effect in B phase at the selected temperature is
absent. Fig. 3c is a superposition of graphs a and b taking implementation of the phase
transition oo — f§ at x = 3 into account, when the curve 1 smoothly transforms into curve
2. Hydrogen atoms with increasing pressure (absorption) has been extensively introduced
into the crystal while with decreasing pressure (desorption) intensively leave it. As a
result of the phase transition a — [ hysteresis loop is distorted in comparison to that one
in Fig. 3 in the absence of transformation. The comparison of the calculated and
experimental isotherms in Fig. 3 and 1 indicates their similar nature.

Conclusions

A statistical theory of the hydrogen absorption-desorption in CeMgCo, crystal with
forming hydrides (deuterides), i.e. a and B CeMgCosH, phases, makes it possible to
explain and justify the behavior of the isotherms of the process, observed experimentally.
The free energies of phases determining their dependency on temperature, pressure,
hydrogen concentration, and activity of the hydrogen atoms and energy constants have
been calculated. Minimization of the free energy, which determines the thermodynamic
equilibrium equation, allowed studying the hydrogen sorptivity of crystals at different
temperatures. The possibility of the hysteresis effect that disappears with increasing
temperature has been shown. Consideration of the phase transformation oo — B allowed
constructing the isotherms close to real ones and explaining the appearance of curves at
the phase transition for them.

Performed calculations show that the experimental investigation of the hydrogen
sorption isotherms in crystals can identify presence or absence of phase transformations
in the system and also identify the possible phase transition temperature, if any. We
should also note that the estimated energy parameters are not optimal. Summarizing
results of independent experiments may allow using the above formulas to set the curves
of absorption and desorption more clearly, as well as to estimate the temperature of phase
transformations in the crystal.
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MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NEW
MULTICOMPONENT HIGH-ENTROPY ALLOYS

The multicomponent high-entropy alloys CoCrCuFeNiSn, (x=0,5;1) were investigated.
Alloys were found to have two-phase (FCC + BCC) structure. No intermetallic phase
formations were observed. The lattice constant of both the FCC and BCC phases increased
with increasing content of the Sn atoms. Furthermore, increase of Sn content led to formation
of BCC lattice-type phase B2 (ordered solid solution). Both of the alloys displayed a typical
cast dendritic structure. Energy dispersive spectrometry revealed a segregation of Cu and Sn
in the interdendritic space. Investigated alloys were found to exhibit high microhardness and
excellent resistance to anneal softening. Their microhardness after annealing at 1000°C for 5
hours and cooling in the furnace remained almost the same. It was established that increasing
of Sn content in the alloy has a positive effect on microhardness as by increasing the degree
of elastic deformation of the crystal lattice, due to the large size of substituting Sn atoms, and
by forming the ordered B2 phase.

Keywords: multicomponent high entropy alloy, structure, microhardness.

BnepBbie  mcciie 0BaHBbI MHOTOKOMIIOHEHTHBbIE€  BBICOKOIHTPONHIiHBIE  CIJIABBI
CoCrCuFeNiSn, (x=0,5;1). YcraHoBjeHO 4YTO0 cmiaaBsl uMeJdun aAByx(paszuyw OLK+I'IK
CTPYKTYpPY, HHTepMeTa/Limyeckue ¢a3pl He o0HapyxkeHbl. [lapameTpnl pemeTrkn kak B OLIK
Tak u B I'llK ¢a3ax Bo3pocrann ¢ yBeanyennem coaep:xkanusa Sn. Kpome Toro, ypeaundenue
cojep:kaHUA SN NPUBOAMJIO K (OPMHUPOBAHHIO YNOPHAJO0YEHHOIO0 TBEpPAOro pacTBOpa co
cTpyKTYpHbIM TUNOM B2 nHa ocnoBe OIIK ¢a3pi. M3yuenHble cnjaBbl JeMOHCTPUPOBAJIH
THINMYHYK NEHAPHUTHYI0 CTpPYKTypy. IIpM momMomu 3HeproaucnepcHOHHOr0 PEHTIEHOBCKOIO
cneKkTpoMeTpa o0Hapy:keHa cerperanust aToMoB Cu M Sn B MeXAECHAPUTHOE NPOCTPAHCTBO.
HccaepopanHbple cIIaBbl  JeMOHCTPOBAJHM BbLICOKHE 3HAaYeHMs MHMKPOTBEpPIOCTH H
YCTOHYHMBOCTh K CMATYeHHIO IyTeM OTHKHUIa. 3HAYEHUS] MUKPOTBEPAOCTH CILIAaBOB 0CTaBAIUCh
NMPaKTHYeCKH HeU3MEHHBIMH MOCJIe OTKHUra B TedyeHUH 5 yacoB nmpu temmepartype 1000°C u
nocJjielyloniero oxXJa:kJIeHusi B me4u. Y CTAHOBJEHO, YTO YBeJHYeHHe codep:kaHus Sn B cnjaBe
0Ka3bIBAJIO NO3UTHBHOE BJIHSAHHE HA BeJIMYHHY MUKPOTBEPIOCTH KaK 0Jiarogaps yBeJIH4eHHIO
cTelmeHU YNpPyroii aedopManuu KPHUCTANIHYECKON pemeTkH H3 3a 00JbIIOT0 pa3mepa
3aMellalIHUX aTOMOB Sn, Tak U 6.1arogaps GopMHUPOBaHHMIO yHOpsAAOYeHHOIH ¢da3pl B2.

KuroueBble c10Ba: BBICOKOIHTPONUNHEIN CIaB, CTPYKTYypa, MUKPOTBEPIOCTb.

Brnepme gocaigkeni OaratokoMnoHeHTHiI BucokoeHTpomniiiHi cnmiaaBu CoCrCuFeNiSn,
(x=0,5;1). BcranoBieno mo cniaapu mMajau asopasny OLHK+T'IK cTrpykTypy, inTepMeTaniyni
¢a3n He BusBieni. [apamerpu pemritku sk B OHK Ttak i B 'K ¢asax 3pocraam 3i
30inpmeHHsaM BMmicty Sn. Kpim Toro, 30iabmeHHsi BMicTy Sn cOpUYHHAI0 (GopMyBaHHS
BHOPAJKOBAHOI0 TBEPAOr0 PO3YHMHY 3i cTpyKTypHuM TunoM B2 Ha ocnoBi OIK dasmn.
JocaigskeHi coaaBM  JeMOHCTPYBAJH THIOBY [JeHAPHUTHY CTPYKTYpy. 3a JA0NOMOroOH
eHeprofucnepciiiHoro peHTreHiBCLKOro cleKTpoMeTpa BHsBJIeHO cerperaniro aromis Cu Ta
Sn y mixaenapuTHuii mpoctip. JocaimxkeHi cmjaBu JAeMOHCTPYBaJHM BHCOKI 3HaYeHHH
MiKkpoTBepaocTi Ta CcTIHKOCTh A0 NOM’SIKINEHHS HWIJISIXOM BinamaJjy. 3HaYeHHs1 MiKpOTBepaOCTi
cIIaBiB 3alMmIaNMCh NPAKTHYHO HEe3MiHHMMH micas Biamaady BHpPoOAOBXK S roauH 3a
Ttemneparypu 1000°C Ta HACTYmHOro 0XoJIoJ:KeHHsl Yy miumi. BecranoBiaeHo, mo 30iibmeHHs
BMicTy Sn y cmjaBi Majio MO3MTHBHMII BIUIHB HA BEJHUYHHY MIKpPOTBepAOCTi SIK 3aBAAKH
30iJIbIICEHHI0 CTYIeHA NPY:KHOI Aedopmanii kpucTanidyHOl peiTKH COIPUYUHEHOI0 BeJIUKHMHU
po3Mipamu aToMiB 3aMilneHHs Sn, Tak i 3aBasiku GopMyBaHHI0O BIOpPsAAKOBaHoi ¢a3u B2.

Kuio4oBi cj10Ba: BUCOKOGHTPONIMHMI CIIaB, CTPYKTypa, MiKPOTBEPAICTh.

© O. I. Kushnerov, V. F. Bashev, 2013
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Introduction

Up to present time, the traditional strategy for developing alloys is to select one or two
elements as principal components for primary properties and other minor elements
incorporated for definite microstructure and properties. In the 1960-1990's many
researchers have explored a wide range of bulk amorphous alloys based on at least three
different components with significantly different atomic radii [1]. However, the design
principles of the above alloys are still limited to the use of matrices containing a high
concentration of one or two elements. The main reason for limiting the number of basic
elements is the expected formation of a large number of brittle intermetallic compounds
and complex microstructures in the structure of alloys. Recently some studies have
developed a new thermodynamic approach to design alloys with multiprincipal metallic
elements [2, 3] As a result, a new class of materials known in the literature as
multicomponent high-entropy alloys (MHA) has been obtained. MHAs generally have at
least five principal elements with the concentrations of each of them between 5 and 35
at.% (equiatomic or near-equiatomic concentrations being better). Alloys with
multiprincipal elements tend to be thermodynamically stable because of their high
entropy of mixing. Due to the high mixing entropy these equiatomic multicomponent
alloys are observed to form solid solutions with simple crystal structures (FCC or BCC),
without detectable intermetallic compounds or ordered phases. MHA’s were first
explored by Yeh et al., the results were published in 2004 [2]. For the past few years, a
number of multicomponent alloys were obtained and studied. A unique structure and a
complex of promising properties, such as hardness, wear resistance, oxidation resistance,
corrosion resistance and high thermal stability [4-8] characterize these alloys. Improved
mechanical characteristics are ensured by the strong distortion of the crystal lattice due to
the differences in atomic radii of the elements. The higher the entropy of mixing, the
more pronounced these characteristics of the alloy. This thermodynamic approach to the
design of a multicomponent alloy allows to define a priori the number of elements and
their relationship, and partly to evaluate the phase and structural state after crystallization.
However, this approach cannot be a unique solution for the problem of choosing the
specific alloying elements to obtain required characteristics. For this reason, basing on
data like mixing entropy to assess MHA properties, it is need to specify the composition
of the alloy empirically. Most of MHA’s were designed with using such metals as Al, Ti,
Cr, Fe, Co, Ni and Cu. In this paper effect of the value of mixing entropy and composition
on the microhardness, phase composition and parameters of the fine structure of
multicomponent alloys CoCrCuFeNiSn, (x=0,5;1) in the as-cast (cooling rate of ~ 10° K-s™)
state has been firstly investigated.

Materials and methods

Cast ingots of the alloys with multiprincipal metallic elements were polished and
electrochemically etched for observation. The microstructures of the as-cast samples were
studied using an optical microscope and scanning electron microscope (SEM) REMMA -
102-02. The chemical compositions of these cast alloys were analyzed by SEM energy
dispersive spectrometry. X-ray diffraction (XRD) was carried out on a DRON -2.0 in
monochromatic copper radiation. The microhardness was measured on a PMT-3
microhardness-meter at a load of 200 g. Selection of the components for investigated
alloys was performed basing on the following considerations.

In accordance with the Gibbs equation

AGm[x = AI—Imix - TASmix : (1)
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Here AG,, - the Gibbs potential, AH , - the enthalpy and AS , - entropy of
mixing, which is determined from the equation

AS,.=-R> ¢Inc, 2)
i=1

¢, is an atomic fraction of the i-th component, R is an universal gas constant. Increasing

of mixing entropy in accordance with Eq. (1) reduces the Gibbs free energy of the alloy
and improves the stability of the solid solution. For the alloy where » is the number of
components maximum mixing entropy is when they are mixed in equal atomic fractions.
However, in practice, is not always possible to achieve the desired alloy properties by
simply mixing the components in the equiatomic ratio. In this regard, additional criteria
have been developed for carrying out selection of alloy elements [9,10]:

1. The value of the entropy of mixing should not be less than 12 J/(molK)).
2 . Enthalpy of mixing should be in the range from -15 kJ/mol to 5 kJ/mol. Too high
enthalpy of mixing leads to the segregation of the individual components of the alloy, too
low leads to the formation of complex structures and intermetallic compounds. The value

of AH ,

X

is determined by the formula

AH,. = IZ Q,cc, 3)
i=l,i#j

where the regular melt-interaction parameter between i-th and j-th
elements (), = 4AH A5

> and AH :ﬁ - mixing enthalpy of binary liquid AB alloy.

3. Alloy components should not have large atomic-size difference. It is necessary for the
formation of simple substitution solid solutions (8 < 4,6, where 0o- parameter
characterizing the difference in atomic radii of the alloy components). For the ordered

solid solutions, d is required to be in the range of 4.6 <6 < 6.5.
n r 2
§=100 ;ci(l—%) (4)

where 7 = Z ¢7;, 1. - the atomic radius of the i-th element.
i=1
Mixing enthalpies and atomic radii of charging elements and their concentration in
the alloys investigated in this paper are shown respectively in Tab.1 and Tab. 2. Values of

AH ., AS . and §, calculated using the equations (2) — (4) for alloy CoCrCuFeNiSnys
are: AH,, =4.23kJ/mol, AS . =14.69 J/(mol'K), 5 = 7.08. For alloy CoCrCuFeNiSn;:
= 4.89 kJ/mol, AS, . = 14.89 J/(mol'K), & = 8.95. Thus, the parameter  for the

AH mix
alloys exceeds the recommended limit, but, as pointed out in [12], this criterion appears
to require some clarification.

The significantly larger atomic radius of tin should have a positive impact on the
value of microstrains and mechanical characteristics of the materials (in particular, the
microhardness H,). The value of microstrains is evaluated from the degree of distortion of
the crystal lattice (Aa /a). In this paper, the level of microstrain and the value of the
dislocation density were estimated from the broadening of the diffraction peaks.
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Table 1
Atomic radii of elements and nominal chemical compositions of CoCrCuFeNiSn, alloys
Co Cr Cu Fe Ni Sn
Atomic radii, nm. 0.125 | 0.129 | 0.128 | 0.126 | 0.125 | 0.158
Composition of CoCrCuFeNiSny s, at.% 18.18 | 18.18 | 18.18 | 18.18 | 18.18 9.1
Composition of CoCrCuFeNiSn;, at.% 16.67 | 16.67 | 16.67 | 16.67 | 16.67 | 16.67
Table 2
Values of AH,,;;; (kJ/mol), calculated by Miedema’s model [12]
Element Cr Cu Fe Ni Sn
Co -4 6 -1 0 0
Cr 12 -1 -7 10
Cu 13 4 7
Fe -2 11
Ni -4

Results and discussion

The phase composition of the investigated CoCrCuFeNiSn, alloys, crystal lattice
parameters and the fine structure parameters (coherent scattering areas and
microstrains) were determined from the XRD patterns. The dislocation density (p)
was obtained from the profile of the first diffraction peak. XRD analysis allowed us
to establish what CoCrCuFeNiSng s and CoCrCuFeNiSn; alloys have two-phase (FCC
+ BCC) structure. With increase in Sn content increases the tendency to form a BCC
lattice-type phase B2 (CsCl).

Results of XRD analysis are shown in Tab. 3, from which it is seen that
increasing of Sn content in the alloy has a positive effect on microhardness as by
increasing the degree of elastic deformation of the crystal lattice, due to the large size
of substituting Sn atoms, and by forming the ordered B2 phase. The lattice constant of
both the FCC and BCC phases increased with increasing content of the Sn atoms.

MHA were also found to exhibit excellent resistance to anneal softening. Tab. 3
shows that their microhardness after annealing, even at 1000°C for 5 hours and
cooling in the furnace, remains almost the same.

Table 3
Phase composition, coherent scattering areas (L), the degree of distortion of the crystal lattice (Aa/a),
microhardness (H,) and the dislocation density (p) of the investigated alloys

Alloy Phase composition L, nm Aa/a H,, MPa H,, MPa p, sm”

(after heat
treatment)

CoCrCuFeNiSngs | FCC (¢=0.3586 nm)+ | Lrcc=37+2 | 1.8:10° | 3500+£200 | 3800+200 | 4.2-10™
BCC (CsCl-type, LBCC:27:t2
a=0.2979 nm)

CoCrCuFeNiSn, | FCC (a=0.3600 nm)+ | Lpcc=19+2 | 2.3-107 4000200 | 3900+200 | 1.6:10™
BCC (CsCl-type, | Lgcc=21+2
a=0.2981 nm)

Fig. 1 is a secondary electron image of the as-cast CoCrCuFeNiSnys and
CoCrCuFeNiSn; alloys subjected to electrochemical etching. Both of the alloys
display a typical cast dendritic structure. Energy dispersive spectrometry revealed a
segregation of Cu and Sn in the interdendritic space (Tab.4). The interdendritic space
of CoCrCuFeNiSn, alloy can be divided into two phases of different composition.
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Fig.1.Microstructures of the CoCrCuFeNiSny s (a) and CoCrCuFeNiSn, (b) alloys

Table 4
Chemical compositions of as-cast CoCrCuFeNiSn, alloys
Element, %
Alloy

Co Cr Cu Fe Ni Sn
Dendrite 22.87 | 20.63 | 6.65 26.54 17.07 | 6.24
CoCrCuFeNiSny 5 Interdendrite 2.33 0.65 | 36.92 2.01 15.04 | 43.05
Dendrite 20.73 | 15.88 | 7.50 22.50 13.92 | 19.47
CoCrCuFeNiSn; . 1.56 024 | 42.14 0.76 9.14 | 46.16
Interdendrite 491 | 128 [ 10.63 | 248 [ 1897 ] 61.73

Conclusions

The investigated multicomponent CoCrCuFeNiSny alloys reveal the presence of simple
crystal structures, i.e. FCC solid-solution and BCC solid-solution phases. No intermetallic
phase formation has been observed in these alloys.

In CoCrCuFeNiSn, alloys revealed the presence of segregation microinhomogeneity
within interdendrite space.

For the investigated alloys increase of Sn content leads to formation of ordered solid
solution phase B2.

The alloy microhardness increase with Sn content increasing. Such a fact can be
explained not only by the increased strengthen effect of lattice strain caused by the lattice sites
occupation of Sn, but also by the ordering into the B2 phase. This conclusion is because the
microhardness increased with increasing degree of ordering in the solid solution.
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STRUCTURE AND PROPERTIES OF PURE Mn, Bi AND MnBi FILMS
IN METASTABLE STATE

The regularities of formation of Bi, Mn and MnBi metastable film structures obtained by
modified three-electrode ion-plasma sputtering method (IPS) were researched. X-ray analysis shown
that in the as-deposited Bi films a mixture of rhombohedral Bi phase (L = 6.5 nm) with traces of cubic
Bi was formed. Heat treatment led to the enlargement of the grains and the complete disappearance of
Bi with a cubic lattice. MnBi films were a mixture of rhombohedral Bi phase and B-Mn in the initial
state. After heat treatment, traces of Bi,Mn and MnO appeared besides those phases. The analysis of
the temperature dependence of resistivity revealed that for pure Mn, Bi and MnBi the activation
energies of the phase transitions were E, ~ 5000 K, E, ~ 8500 K and E, ~ 3500 K respectively. After
heating the Bi and MnBi films to the temperatures above 670 K and subsequently cooling them to a
temperature of 490 K there was an abrupt change in resistance. The analysis of demagnetization curves
showed that the hysteresis of magnetization was observed only in the films containing Bi because of the
assumed manifestations of ferrimagnetic properties of Bi oxide in the non-equilibrium state.

Keywords: MnBi films, ion-plasma sputtering, hard magnetic materials, metastable state.

B paGore wmcciaenoBaHbl 3aKOHOMEPHOCTH (OPMHPOBAHUS MeTACTAOMJIBHBIX CTPYKTYP
mieHok Bi, Mn u MnBi nojiydeHHBIX MOJEePHH30BAHHBIM METOJOM TPeX3J1eKTPOJIHOI0 HOHHO-
miiazMedHoro pacnelienusi (UIIP). B pesyjibTaTe peHTreHOCTPYKTYPHOI0 aHAJIN3a YCTAHOBJICHO,
YTO B CBE)KEHANBUIEHHBIX NJIeHKaX 4yucToro Bi o0pa3syercsi cmech ¢a3 pombéodapuyeckoro Bi
(L=6.5 uM) u caeaoB kyduueckoro Bi. TepmooOpaGoTka mpuBoaHIa K YKPYNHEHHUIO 3epeH H
MOJIHOMY HcYe3HOBeHUI0 Bi ¢ kyOmueckoil pemerkoii. Ilnmenxkn MnBi B mcxogHoM cocrosinuu
npeacTaBisiiin cmech ¢a3 pombodapuyeckoro Bi m B-Mn. Ilociie TepmooGpaGoTku Kpome
ykazaHHbIX (a3 mnosBasikch ciaeabl BiMn m MnO. AHaau3 KpHBBIX TeMIepaTypHOil
3aBHCHMOCTH 3JIEKTPOCONPOTHBIEHHUS MJIEHOK MO3BOJINJ YCTAHOBUTH, YTO IJs YHCTHIX Mn, Bi n
MnBi 3Heprus aktTuBanuu ¢a3oBbIx nepexonos cocrabiasier E,~5000 K, E,~8500 K u E,~3500 K
coorBeTcTBeHHO. IIpu HarpeBe mieHok 4yuctoro Bi u MnBi no temmneparypsl cbime 670 K u
nocjaeayomeM oXJaxkaeHHH 10 Temmnepatypbl 490 K mpomcxoamiio ckaukooOpazHoe H3MeHeHHe
CONMPOTHBJICHUsI. AHAJIH3 KPHUBBIX pa3sMATHHYMBAHHMA IJIGHOK I0Ka3aj, 4YTO THCTepe3Huc
HAMATHUYHMBAHUSA Ha0J10JaeTcsl TOJAbKO B IJIEHKAX cojep:kamux Bi, mockonbKy npeamoJiaraercs
nposiBiieHue ¢peppuUMArHUTHBIX CBOICTB okcuaa Bi B HepaBHOBECHOM COCTOSTHUH.

KuaoueBble ciaoBa: rieHkd MnBi, HOHHO-IIIIa3MEHHOE paclblUIEHHE, MarHUTOTBEPAbIE MaTepuallbl,
MeTacTabHIbHOE COCTOSIHHE.

Y po6orti pocaigkeni 3akoHoMipHOcTI popMyBaHHsI MeTacTaliJbHUX CTPYKTYp miaiBok Bi,
Mn, tTa MnBi oTpumMaHux MOAepHiI30BaHMM MeTOAOM TPBHOXEJIEKTPOJHOI0 iOHHO-IJIA3MOBOIO
posnuaoanda (IIIP). B pe3yabTaTi peHTreHOCTPYKTYPHOro aHajdi3y BCTAHOBJEHO, W0 B
CBiskeHaNMJeHUX MiIiBkax yucroro Bi yreoproerscs cymim ¢a3 pomoéoenpuyunoro Bi (L=6.5 um) Ta
caigiB ky6iunoro Bi. TepmooOpoOka npuBoan/a 10 30i1b1lIeHHS 3epeH Ta MOBHOr0 3HUKHeHHH Bi
3 KyOiuHow pemiTkor. [lniBkn MnBi B mouaTrkoBoMy cTaHi ABJSIIN cyMill ¢a3 poMOoeIPUIHOTO
Bi Ta f-Mn. Ilicis TepmMooOpoOku KpiMm 3a3HavyeHux (a3 3’sBasuiuch caigm Bi;Mn ta MnO.
AHaJli3 KPUBHX TEeMIEPATYPHOI 32JI€:KHOCTI €JIEKTPOONOPY IJIIBOK J103BOJIMB BCTAHOBUTH, 10 JJIS
yuctux Mn, Bi Ta MnBi enepris aktuBauii ¢pasoBux nepexonis ckiaanae E,~5000 K, E,~8500 K Ta
EA~3500 K Binnoigno. IIpu HarpiBi naiBok yucroro Bi Ta MnBi 1o temneparypu oisiibme 670 K
Ta NOAAJBIIOMY O0XO0JIo[AxKeHHI0O A0 Temmnepatypu 490 K BindyBajgacs crpudkonogiona 3mina
eJIEKTPOONopy. AHadi3 KpPHUBUX po3MardHiuyBaHHsi IUIIBOK NoOKa3aB, 10 Tricrepesic
HAMArHiYyBaHHSl CIOCTEPiraeTbcsl TiAbKM B IJiBKaX, iKi MicTATh Bi, ockinbku npunyckaerncs
HasIBHiCTH (pepuMarHiTHuUX BjacTuBocTeil okcuay Bi y HepiBHOBa:kHOMY cTaHi.

KuaouoBi caoBa: miuiBkm MnBi, ioHHO-IITa3MOBE PO3NMIIIOBAHHS, MAarHITOTBEPJi MaTepiay,
METaCTaOUILHUIA CTaH.

© P. S. Gusevik, S. I. Ryabtsev, F. F. Dotsenko, 2013
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Introduction

Significant interest in studying of MnBi alloys is due to the manifestation of high
coercivity and residual magnetization, which is typical for high magnetic materials [1].
The MnBi ferromagnetic phase presence allows using this material as magnetic elements
for microelectronic devices and high-density information recording [2]. Recently research
has been carried out to improve the magnetic properties of known magnetic materials by
heat treatment and obtaining conditions influencing on the domain structure. It has also
become topical the study of magnetic samples obtained under non-equilibrium conditions
in the film form. Such films are amorphous or nanocrystalline compounds in which the
important role played by the size effects. Such effects have a direct impact on the
physical properties of samples. The paper investigates the structure, phase composition
and physical properties of the Mn, Bi and MnBi films, as well as the influence of the
deposition conditions and heat treatment on the original structure and properties.

Materials and methods

Investigations were carried out on pure Mn, Bi and MnBi thin films with
compositions (atomic %): MnsoBiy;; MnsgBisy; MngoBis;; Mng,Biss. The films with
thicknesses about d ~ 150 - 400 nm was obtained by a modernized three-electrode ion-
plasma sputtering [3] under various deposition conditions (Table 1). The effective cooling
rate for this method is theoretically estimated as 10'* - 10" K/s [4] and associated with
the relaxation of individual atoms on the substrate. Inert Ar was used as the working gas.
The film thickness was determined by the gravimetric method through weighing the
substrate before and after spraying.

Table 1
Conditions of thin film deposition
Mn Bi Mn+41%Bi Mn+44%Bi Mn+51%Bi Mn+58%Bi
d, nm 160 500 380 240 340 150
In, A 1 1 0.8 2 0.8 0.8
Par, mPa 120 120 16 53 16 16
U, kV -2 -2 -2 -2 2 -2
0, eV 20 20 200 100 200 200

where U - target voltage; I - anode current; P,, - working gas pressure (Ar); d - film thickness; ¢ - the kinetic
energy of the deposited atoms.

The deposition of the films was carried out on NaCl single crystals and
pyroceramics (sitall) substrates. The films deposited on NaCl substrates were used for
studies of phase composition in the initial and heat-treated states. The phase composition
investigation was carried out by X-ray analysis using the Debye camera with filtered Co-
radiation and transmission electron microscopy (on the samples received under reduced
thickness and deposition time). The lattice periods were estimated by the quadratic
equations with an accuracy of = 0.001 nm.

The physical properties and thermal stability were examined for the films deposited
at pyroceramics substrates. The films surface resistivity was measured by four-probe
method with continuous heating in a vacuum about ~ 10 mPa with controlled heating
rates between 4 and 20 K/min. The activation energy calculation of phase transitions was
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performed by the Kissinger method, i.e. by analyzing the phase transition temperature
displacement with heating rate changing. The film coercive force H, was investigated by
the vibration magnetometer in the maximum magnetizing field about 0.5 T, with parallel
and perpendicular orientation to the film surface.

Results and discussion

X-ray analysis results of the initial and heat-treated films are shown in Table 2.
Investigations were performed on freshly deposited and heat-treated films with different
thicknesses and obtained at different deposition conditions for studying the structure
formation (for example, at reduced plasma gas pressure (from 120 to 16 mPa), which

increases the energy of deposited atoms).
Table 2
Freshly deposited and heat-treated films phase composition

Phase composition of films
Composition The
(at.%) annealing In initial state After heat treatment
temperature
Mn 770 K B-Mn (L=7.4 nm) (¢=0.688 nm) | P-MD (L’IO‘SE/I%(“’O'@ nm) +
rhomb Bi (L=6.5 nm) s _ )
Bi 650 K (a=0.4552 nm; c=11.83 nm) + | homb Bi (L=8 nm) (¢=0.4515 nm;
cubic Bi + Bi,0; ¢=11.99 nm) + Bi,0;
rhomb Bi (L=7 nm) rhomb Bi (L=9 nm) (¢=0.4679 nm;
Mn+41%Bi 670 K (a=0.4543 nm; c=11.84 nm) + ¢=11.37 nm) + Bi,Mn + B-Mn
cubic Bi + B-Mn (¢=0.6985 nm) (¢=0.703 nm) + MnO
. rhomb Bi (L=6.7 nm rhomb Bi (L=8 nm) (¢=0.452 nm;
Mn+44%Bi 660 K (a=0.462 nm;(c:1 1.8 rm)l) + c=11.22 nmg + B—Mn) ((a=0.697 nm) +
cubic Bi + B-Mn (¢=0.632 nm) MnO
Mn+51%Bi rhomb Bi (L=6.5 nm) rhomb Bi (L=13 nm) (¢=0.4552 nm;
690 K (a=0.4533 nm; c=12.08 nm) + ¢=11.85 nm) + Bi,Mn + B-Mn
cubic Bi + -Mn (¢=0.6292 nm) (¢=0.633 nm) + MnO
rhomb Bi (L=9.5 nm) rhomb Bi (L=11 nm) (¢=0.4538 nm;
Mn+58%Bi 670 K (a=0.39 nm; c=11.91 nm) + ¢=12.05 nm) + B-Mn (¢=0.6328 nm) +
cubic Bi + B-Mn (¢=0.6249 nm) MnO

where romb Bi - equilibrium rhombohedral Bi phase, cubic Bi - non-equilibrium cubic Bi phase, L - coherent
scattering region size (CSR).

In the initial Mn films the nanocrystalline f-Mn phase (with CSR size L ~7.4 nm)
was observed. After heat treatment in vacuum at a temperature of 770 K manganese is
oxidized with the MnO oxide formation, and CSR size of f-Mn phase increases to 10.5 nm.

In the original Bi films there were the mixture of equilibrium rhombohedral Bi phase
(with the CSR size L ~ 6,5 nm), nonequilibrium Bi with a cubic lattice, and traces of Bi,O;
oxide (Fig. 1¢). The heat treatment of the films at a temperature of ~ 650 K leads to the decay
of Bi cubic and its transition to the equilibrium state, and there is an increase of the CSR size
of Bi rhombohedral to L ~ 8 nm. The structure of initial Bi film is shown in Fig. 1a.

In the MnBi films, as shown by electron diffraction and X-ray studies, in the initial
state there were a mixture of the cubic and rhombohedral Bi phases as well as f-Mn
traces. The CSR sizes of rhombohedral Bi phase for various compositions are shown in
Table 2 and are in the range of L ~ 6.5 — 9.5 nm. After heat treatment at temperatures of
670 K there was a grain growth of rhombohedral Bi phase (L ~ 8 - 13 nm) and the change
of the lattice to the values corresponding to the equilibrium state (Fig. 1d). As in the case
of heat treatment of pure Mn and Bi, there were the decay of nonequilibrium Bi and -Mn
phase oxidation. Furthermore, in the MnsgBiy; and MnyyBis; films obtained with the low
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Fig. 1. X-ray diffraction patterns and microstructure of Bi and MnBi films: a) the structure of the
original Bi film; b) the structure of the original MnBis; film; ¢) X-ray patterns of Bi film in initial
and heat-treated states; d) X-ray patterns of MnyyBis; film
where; * - Bi rhombohedral; + - Bi cubic; ° — Bi,Os; ¢ - §-Mn; m — Bi;Mn; o — MnO.

pressure of working gas and the high energy of deposited atoms, after heat treatment there
was intermediate Bi,Mn phase formation. In the Mny,Bisg film obtained under identical
conditions the formation of the intermediate phase does not occur; this may be due to the
relatively low film thickness (150 nm). The typical structure of MnBi film is illustrated in
Fig. 1b. On the X-ray and electron diffraction there is broadening of the diffraction peaks,
which may be associated with the occurrence of internal stresses during the formation of
an intermediate phase.

The thermal stability of the films was investigated by recording the temperature
dependence of the surface resistivity in a vacuum at a constant heating rate. The temperature
dependence of the resistance curves are characterized by a number of characteristic sections.

In the pure Mn films the first section (from 295 K to 600 K) is characterized by a
reversible change in resistance. This indicates that in this temperature range phase
transitions does not occur and the sample structure remains stable. The second area is
characterized by an irreversible decrease in the surface resistance in the temperature
range from 620 K to 700 K, which indicates the phase transitions and changes in the film
structure associated with recrystallization processes. At a temperature of ~800 K, the
sample is subjected to strong oxidation. The third region is characterized by a reversible
decrease in resistance during cooling from 770 K to 295 K.

In the MnBi films the first section is in the temperature range from 295 K to 570 K.
The second section, showing a phase transition, is about from 570 K to 670 K, and the
third temperature region is about from 700 K to the room temperature.
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Structure and properties of pure Mn, Bi and MnBi films in metastable state

The Bi resistivity behavior during heating and cooling is different from the
described above areas. At a temperature of 620 K there is a phase transition associated
with the Bi melting, which is manifested in a relatively sharp decrease in resistance. The
resulting melting point of Bi film is different from the data on the melting point of bulk
samples by about 60 K. There is a instant increase in resistance (two fold) due to the Bi
crystallization by lowering the sample temperature to ~ 480 K. The most typical
temperature dependence of the surface resistance is shown in Fig. 2.

100 —
e ———
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0 ‘ ‘ ‘ , . . . .
B W ¥ 40 Taeku B0 %0 60 680

Fig. 2. The temperature dependence of the resistivity of Bi film.

As a result of the phase transition temperature displacement investigations with the
increase in the heating rate there are the calculation of the activation energy of phase
transformations (E,) by the Kissinger method. In pure Mn and Bi films the activation
energy is Ex~5x10° K u Ex~8.5x10° K. The MnBi films activation energy is in the range
EA~3 - 5x10° K, depending on the film thickness and phase composition.

The demagnetization curve analysis of the pure Mn films, as expected, did not show
hysteresis characteristics in parallel and perpendicular fields. In Bi films the hysteresis
properties are manifested due to the formation Bi,O; oxide as a result, so the magnetic
moment of the sample is uncompensated. MnBi films are characterized by anisotropy of
magnetic properties. In the perpendicular magnetic field the films show the weak
hysteresis properties. The coercivity does not exceed 2 kA/m in the initial state. Heat
treatment at 720 K leads to an increase in coercivity up to 38 kA/m (Fig. 3). Heating
above this temperature leads to the Mn oxidation, which leads to significant deterioration
of magnetic properties. Thus, improvement of magnetic characteristics can be realized by
choosing the exposure time at a predetermined temperature.
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Fig. 3. Demagnetization curve of the MnyyBis; alloy after heat treatment
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Conclusions

As a result, we can say that with the X-ray analysis and investigation of the
magnetic properties of the Bi films was determined Bi,O; oxide formation, which
contributes to the manifestation of the hysteresis properties. The investigation of the
deposition condition influence on the film structure has shown that the intermediate
Bi,Mn ferromagnetic phase is formed in the case of reduced pressure of the working gas
and relatively high energy of the deposited atoms. The melting point of Bi films produced
under non-equilibrium conditions is shifted by ~ 60 K compared to the bulk samples. Our
investigation of the samples temperature stability has shown that the heating of the MnBi
films to the temperature above 750 K leads to the active Mn oxidation that results in
significant deterioration of the electrical and magnetic characteristics.
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NANOCRYSTALLIZATION PROCESSES IN THE “FINEMET” TYPE
MICROWIRES UNDER STRESS ANNEALING

Effect of thermal treatments such as conventional annealing and annealing under
tensile stress on nanocrystallization behaviour of Fe;)gCu;Nb; ;Sij4sB19¢s glass-coated
microwire was investigated. Initial microwire obtained by the Taylor-Ulitovski technique
had an amorphous structure. It was found that conventional annealing within the
temperature interval of 500 — 550 °C during 5 min led to the formation of primary a-
Fe(Si) crystals in residual amorphous matrix. The mean grain size of the formed crystals
was about of 16 nm and the crystallized volume fraction was 42%. The annealing under
tensile stress resulted in changing mechanisms of crystallization, from primary to
eutectic crystallization. The structure of microwire annealed within the mentioned
temperature interval under stress was the mixture of a-Fe(Si) and Fe;B crystalline
phases. The mean grain size and crystallized volume fraction of the a-Fe(Si) crystals
decreased up to 11 nm and 31 %, respectively. The optimal soft magnetic properties of
microwires (coercivity was ~ 65 A/m) were achieved by annealing at 520 °C. It was
connected with the formation of nanocrystalline structure of microwire.

Keywords: microwire, amorphous state, nanocrystalline structure, heat treatments.

B pabore mcciie10Baoch BJIUSIHME Pa3JHYHBIX BHIOB TepMOOOPa0OTKH Ha Npolecchl
KPHCTAJNJIN3aUUH B MUKponpoBojae coctaBa Fe;ygCu;Nb; ;Sij sB1g¢ B cTeKITHHON H30AAUH.
Hcxoanplii MHKPONPOBOJ, MOJYYeHHBbIH MeTOoAOM YauToBckoro-Teiijopa, umen amop¢pHuyio
cTpykTypy. Ilpy TpagMUHOHHOM OTKMIe B MHTepBajge Temmepartyp 500 — 550 °C (5 mun.)
NMPOUCXO0AHJ0 (pOopMHPOBAHHE NEePBUYHBIX KpHucTaLioB o-Fe(Si) B ocraBumeiica amopdHoii
matpuue. CpeaHuii pa3Mmep KpUCTAJLJI0B COCTABJINAT ~16 HM M 10J151 KPUCTAJIHYECKOH (a3bl —
42 %. OTXHMr NpU HAJIWYHH OJHOOCHOIO pACTSKEHHs NPHUBOAUJI K CMeHe MeXaHH3Ma
KPHCTANJIH3ANNH OT NePBUYHON K 3BTeKTHYecKkoi. CTPyKTypa MUKpPONPOBO/Ja, OTOKKEHHOT 0
B 3TOM Ke TeMIepaTypHOM HHTepBaje NPHM HAJIHYHH HATPY3KH, MpeAcTaBjasdIa coboii cmech
¢a3: o-Fe(Si) um Fe;B. Cpennuii pa3mMep M 105 3aKpHcTa/JiIM30BaBuIerocs oObema
kpucranios o-Fe(Si) ymenpmanauce g0 11 am u 31 %, coorBercTBeHHo. OnrumajbHbIe
MAarHHTHBIE CBOHCTBA MHUKPONPOBOJAAa (KOIPUHUTHUBHAA CHJIA ~ 65 A/M) mosy4ajanch OT:KHIOM
npu Temmepartype 520 °C, 4To CBA3HIBAJOCH C 00PAa30BaAHMEM B HEM HAHOKPHCTAIIHYECKONH
CTPYKTYPHI.

KioueBble cioBa: MUKPONPOBOJ, aMOP(QHOE COCTOAHHE, HAHOKPUCTAJUIHYECKast CTPYKTypa,
TepmMooOpaboTka.

Y poGori nociainKyBaBcsi BIJIMB Pi3HUX BUIAIB TepMOOOPOOKM Ha mpouecH Kpucragizanii
y Mmikpoaporti ckaany Fe;ogCuiNb;SijqsB19¢ B ckasniii izoasuii. Buxiguuii mikpoapir,
oTpuMaHuii merogom VYiitoBchbkoro-Teistopa, maB amop¢guy crTpykrypy. Ilpu Bigmaai B
inTepBaai remneparyp 500 — 550 °C nporsirom 5 XB. CHOCTEPirajioch yTBOPEHHs MEPBUHHUX
kpucraiais a-Fe(Si) B amopduiii marpuni. Cepeaniii posmip kpucraiip ckiaagas 16 HM Ta
yacTKka KpucTajdiyHoi ¢asu — 42 %. Binnaa npu npukiajeHHi po3TArHeHHs NPHBOAMB 10
3MiHNM MeXxaHi3My KpucrTagizauii Bix nmepBuHHOI 10 eBTeKTHYHOI. CTPYKTypa MHKPOIPOTY,
Bi/lllaJIeHOr0 M HABAHTAKEHHAM B IbOMY TeMIlepaTyYPpHOMY iHTepBaJi, sABJsJa c00010 cymil
¢a3: o-Fe(Si) u Fe;B. Cepeaniii posmip Ta yacTka xpucraidiynoi ¢a3u kpucraiais a-Fe(Si)
3MeHmyBajgucs a0 11 Hm Tt1a 31 % BigmoBigno. OnrtumaabHi Mar”iTHi BJaacTHBOCTI
MiKpoaApoTy (KOEpUMTHBHA cHaa ~ 65 A/M) Oyam JOCATHYTI Biamajaom 3a temnepatypu 520 °C,
1o 0yJio NOB’fA3aHO i3 JOPMYBAHHAM B HbOMY HAHOKPHCTAJIYHOI CTPYKTYpH.

Karw4oBi cioBa: MikpoapiT, aMOpOHHUI CTaH, HAHOKPUCTATIYHA CTPYKTYypa, TEPMOOOpOOKa.

© N. A. Kutseva, V. F. Bashev, A.Y. Derun, V. S. Larin, 2013
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Introduction

The soft ferromagnetic nanocrystalline alloys with trade mark “Finemet” are very
promising for technological applications. The enhanced softness of these materials
(coercivity less than 5 A/m, high initial permeability values) is usually achieved by the
formation of nanocrystalline structure, which consists of an ultrafine a-Fe(Si) grains with
typical size 10-15 nm embedded in a residual amorphous matrix. The most reported
results are carried out on melt-spun nanocrystalline ribbons. On the other hand, the
Taylor-Ulitovsky method allows to fabricate tiny metallic wires (the metallic nucleus
diameter 1+50 um) covered by an insulating glass coating (the glass coating thickness
1+20 pm). Nanocrystalline glass-coated microwires (MW) having the excellent
combination of soft magnetic properties, stability of nanocrystalline state with small
dimensions and their resistance to corrosion are very perspective as sensor elements in a
large variety of electronic devices and sensors [1]. During the manufacturing process the
large internal stresses (~1GPa) arise as a result of difference between the thermal
expansion coefficients of glass and alloy. The presence of such a residual stresses forms a
complex domain structure of initial MW [2, 3]. It leads to increasing the coercivity and
decreasing the initial permeability. The magnetoelastic anisotropy related to the internal
stresses induced during the fabrication as well as the value and sign of the
magnetostriction constant play a decisive role in the hysteretic magnetic properties of
these thin wires. As well known, thermal treatments allow tailoring the magnetic
properties of glass-coated MW [4, 5].

The aim of this work is to investigate the effect of thermal treatments such as
conventional annealing and annealing under tensile stress on the structure and physical
properties of MW.

Experimental details

Initial FesogCuiNb;1Sij4sBios MW with metallic nucleus diameter 16 um and total
diameter 26 pum have been obtained by the Taylor-Ulitovski technique. The
microstructure of initial and heat-treated microwires has been characterized by X-ray
diffraction (Mo K,, Co K, radiation). The annealing has been performed in conventional
furnace at the temperature below crystallization temperature without applied stress (CA)
and under applied tensile stress 10 g and 15 g on one microwire (SA). The temperature
dependence of the electrical resistivity was used for studying crystallization processes
occurring in MW. Thermal analysis for microwires was carried out using a Netzch 404
differential scanning calorimeter (DSC). Studied sample of a few mg weights placed in
the alumina crucible and reference sample (empty crucible) were heated with identical
thermal program (a heating rate was 20 K/min) while heat flow difference between
sample and reference was recorded. Absorbed and released heat values were plotted as a
function of temperature. Magnetic properties of microwires were measured by means of a
conventional induction method at 50 Hz.

Results and discussion

The X-ray diffraction patterns showed that the initial microwires have amorphous
structure (Fig.1). As can be seen, there are some broad diffusive halos, which are an
inherent feature of disordered structures. Size of the coherently diffracting domains was
approx. 2nm.

In order to study the structure changes and crystallization behaviour in microwires
during isochronal heating a DSC test and measurements of electrical resistivity versus
temperature were carried out, as shown in Figs. 2, 3.
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Fig. 1. Mo K, X-ray diffraction pattern of

initial microwire.

The DSC curve shows exothermic effect
in the temperature range from 200 °C up to the
crystallisation temperature (Tx = 520 °C) and
crystallization peak at the temperature 560 °C.
The Curie temperature (T.) was evaluated
analysing the curve of magnetisation versus
temperature. Its value was 317 °C. It
corresponds to the change in the slope of DSC
curve. The onset glass transition temperature T,
is 450 °C and the difference (AT) between Ty
and T, so called the width of the supercooled
region that relates to the stability of
amorphous phase, is 70 °C.

The results of the DSC curve correlates
with the results of electrical resistance. As can

be seen from Fig. 3, the microwire resistivity increases slightly up to 300 °C and there is a
sharp decrease of the resistivity from 300 °C to 500°C. The under stress annealing (SA)
did not change the character of temperature dependency, but its values slightly increased.

Heat flow, arb. units
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T.°C
Fig. 2. The differential scanning calorimeter
curve for microwires.

As X-ray results showed, with increasing
the annealing temperature (CA) in the range
from 500 °C to 550 °C it observed increase of
main peak height and its sharpening. It can be
explained the formation of the nanocrystalline
structure (Fig. 4). As can be seen only a BCC
a-Fe(Si) phase appears in residual amorphous
matrix. The full width of the peak at half
maximum and crystallized volume fraction (X,)
at the final stage of primary crystallization have
been evaluated by deconvoluting the total profile
of the amorphous halo and the (110) peak of
a-Fe(Si) phase [6].
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Fig. 3. The temperature dependence o f the
resistivity of microwires.
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Fig. 4. Co K, X-ray diffraction pattern of
microwires treated at 550 °C (5 min).

The mean grain size of the formed crystals is derived from the Scherrer equation. It
is ~ 16 nm and X, ~ 42%. Thus, the conventional annealing in range of 500-550 °C leads
to the formation nanocrystalline structure through primary crystallization. The other
crystallization behavior we have in the case of SA at 110 MPa (Fig. 5).
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One can see the width of the main peak 400 . . .

does not decrease; moreover, it appears

shoulders on the curve. After deconvoluting the £ 300+

total peak on the components it was found, that 2

the structure of stress treated microwires 8 5.

consists of the mixture of o-Fe(Si) and (body 2

tetragonal cubic) Fe;B crystalline phases [7]. é 100-

The mean grain size and crystallized volume  —

fraction of a-Fe(Si) phase is 11 nm and 31 %, o

respectively. The lattice parameter of o-Fe(Si) 22
phase is 0.284 nm and it differs from equili-
brium one, likely it connects with the Fig. 5. Co K, X-ray diffraction pattern of
influence of metalloid atoms according to data microwires treated at 550 °C (5 min)

: under stress 110 MPa.
of phase diagram.

As well known amorphous structure is very often inhomogeneous and consists of the
clusters with different short order. It is possible that stress annealing stimulates the processes of
amorphous phase separation into two phases with different compositions and following
formation of the mixture of a-Fe(Si) and Fe;B crystalline phases through eutectic crystallization.

Magnetic characterization of initial and heat treated microwires was performed by
conventional method. Coercivity of initial microwires was ~ 100 A/m. It was found that the
coercivity values decreased to 62 A/m with increasing annealing temperature up to 520 °C.
As X-ray analysis showed it was connected with formation of nanocrystalline structure.

Conclusions

Initial glass-coated Fe;osCu;Nbs 1Sij45B1g¢ microwires have an amorphous structure.
Size of the coherently diffracting domains is approx. 2nm. Conventional annealing in
temperature range 500 — 550 °C leads to the formation of nanocrystalline structure
consisting of a-Fe(Si) nanograins in residual matrix through primary crystallization.

Annealing under tensile stress in this temperature range leads to the formation of the
mixture of a-Fe(Si) and Fe;B crystalline phases through eutectic crystallization.

The optimal soft magnetic properties of microwires are achieved at the annealing at
520 °C (coercivity ~ 65 A/m).
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INVESTIGATION OF RECHARGING PROCESSES FOR THE VOLUME
LOCALIZED STATES IN POLYCRYSTALLINE SEMICONDUCTORS

The influence of recharging processes for the volume localized states in semiconductor component of
polycrystalline structure on the kinetics of isothermal depolarization current is theoretically studied. The
equation of continuity of electric induction on the borders of the insulator-semiconductor together with a
first integral of the equations for the spatial charge is used as a model. Kinetic equations are recorded on the
basis of the Shockley - Red - Hall statistics. The current density of depolarization, induced recharge of
surface and volumetric local electronic states are determined as a result of the decision. The spectral
characteristics of the current are obtained with using the Fourier transformation. In the spectra there are
two clearly distinct maxima. The low-frequency maximum corresponds to the surface states, and the high-
frequency one corresponds to the volume localized states. The values of parameters that are typical for the
metal-oxide varistor ceramics based on ZnO are taken in the calculations. It is shown that the kinetic and
spectral dependences of depolarization current at different temperatures can be used to evaluate the
ionization energy and temperature dependences of the capture ratios of the electron states.

Keywords: polycrystalline semiconductor, isothermal depolarization current, localized electronic states,
kinetics, spectrum, potential.

Teoperuyecku wucciaeqyercsi BJIHsSHHE IIPOLECCOB Iepe3apsiKH  00beMHBIX JIOKAJIM30BAHHBIX
COCTOSIHMI B MOJIYNPOBOJHHKOBOI KOMIIOHEHTe MOIMKPHCTAININYECKOH CTPYKTYPbl HAa KHHETHKY TOKa
HM30TePpMHYECKOil Jenossipusanud. B kadecTBe MoJeJH MCHO/IBL3YeTCS YPABHEHHSl HeENPEPbIBHOCTH
JIEKTPHYECKOl HMHAYKIMM HA IPAHMLAX HM30JISITOP-NOJYNPOBOJHHK BMeECTe € IePBbIM HHTErpajioM
Ilyaccona n1s1 001acTeli NPOCTPAHCTBEHHOI O 3apsiia. Kunernueckue ypaBHeHuUs 3alIMCBIBAIOTCH HA OCHOBE
craructukn Hloxm - Pupa - Xosmia. B pesyabrate pemieHusi onpeneiisiercsl INIOTHOCTh TOKAa
JenoJisipu3anuy, 00ycJ0BJICHHOIO Nepe3apsiikoil NOBEPXHOCTHBIX U 00beMHBIX JIOKAJILHBIX 31eKTPOHHBIX
cocrosHuii. C mMcnonb3oBaHHeM mpeodpa3oBaHusi Dypbe MOTYYAKOTCSl CNEKTPAIbLHBbIE XapaAKTePUCTHKH
Toka. B cmekTpax sIBHO BBIICJNSIIOTCS [Ba MAKCHMyMa: HH3KOYACTOTHBIH, COOTBETCTBYIOIIMIi
MOBEPXHOCTHLIM M BBICOKOYACTOTHBII, COOTBETCTBYIOIHI 00beMHbIM JIOKAJH30BAHHBIM COCTOSTHHSIM.
IIpn pacyerax NMPUHUMAIOTCSI 3HAYEHHS MAPaMeTPOB, XapaKTepHbIe I MeTAINIOKCHIHON BapHCTOpHOIt
KepamMuku Ha ocHOBe ZnO. Iloka3aHo, YTO0 KHHETHYECKHE H CIEKTPAJIbHbIC 3aBHCHMOCTH TOKa
JeNoJIIpPU3AIMH NPH PA3HBIX TEeMIEPATYPaX MOKHO MCIO/Ib30BAaTh /ISl OLEHKH JHEPrMM HMOHM3ALMU U
TeMIePATyPHBIX 3aBHCUMOCTeH KOI()(PULHEHTOB 3aXBATA 3IeKTPOHHBIX COCTOSTHUIA.

KiioueBble c¢j10Ba: MONMKPUCTAUTMYECKHI MOMYNIPOBOJHUK, TOK H30TEPMUYECKON EMOJApH3aliy,
JIOKAIT30BaHHBIE YIEKTPOHHBIE COCTOSHYISA, KHHETHKA, CITEKT], TOTEHIHAL.

TeopeTHYHO AOCIIKYETbCA BIUIMB NpoLeciB nepe3apsiikid 00’€MHHX JIOKAJi30BaHMX CTaHiB B
HANIBNPOBITHUKOBI KOMIIOHEHTi MOJMIKPUCTAIIYHOI CTPYKTYpH HA KiHETHKY CTPyMy i30TepMiuHOL
aenoaspizanii. B sikocti Mogesi BMKOPHCTOBYETbCS pPIiBHSIHHSI HeNEepPepBHOCTI Ha MeKax i30JSTOp-
HAIIBIPOBITHHK cyMicHO 3 nepmnM inTerpajom Ilyaccona nis odmacreii npocroposoro 3apsiny. Kinernuni
piBHAHHA 3anucyloTbest Ha ocHOBi cratucrtuku IMloxkni — Pina — Xoswia. B pesyabrari pimenns
BH3HAYAEThCS IIVIBHICTL CTPYMY AenoJspu3anii, 00yMOBJICHOI0 Iepe3apsiIkol0 MOBePXHEBUX i 00’eMHHNX
JIOKATBHUX €JeKTPOHHUX CTaHiB. 3 BHKOPHCTAHHSIM IepeTBopeHHs Dyp’e 0fep:KylOThCS CHeKTPaIbHi
XapaKTepUCTHKH cTpyMy. B cmekTpax fIBHO BHIISIIOTBCA ABa MAaKCHMYMHM : HHM3bKOYACTOTHHii, 10
BiINoOBila€ MOBepXHeBUM i BHCOKOYACTOTHMIi, L0 BiamoBinae 00’eMHMM JoKadizoBaHuM ctaHam. Ilpu
PO3paxyHKax MNpUiMAOTbCA 3HAYEHHS NapaMeTpiB, XapakTepHi 11 MeTAJIOKCHIHOI BapHUCTOPHOL
Kepamiku Ha ocHOBi ZnO. [Toka3aHo, 0 KiHeTHYHI i cIeKTPaIBLHI 321€3KHOCTI CTPYMY JenoJsipu3anii npu
Pi3HHX TeMIepaTypax MOKHA BHKOPHCTOBYBATH /Ui OLIHKH eHepril ioHi3amii i TemmeparypHux
3aJIeKHOCTel KoedillieHTIB 3aXBaTy €JIEKTPOHHHUX CTAHIB.

KirouoBi ci10Ba: monikpucTaniuHui HAMIBIPOBIIHUK, CTPYM i30TepMIdHOI JAemOsIpu3aliii, JoKasti3oBaHi
SJICKTPOHHI CTaHM, KIHETHKA, CIICKTP, OTCHIIIaI.

© V. S. Khandetsky, Yu. A. Tonkoshkur, 2013
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Introduction

Electron exchange processes for localized states in polycrystalline semiconductors
with intercrystallite potential barriers can be studied by analyzing the isothermal
depolarization (ID) current kinetics [1].

The known basic theoretical model of the ID current kinetics in polycrystalline
semiconductors is based on the concept of recharging surface localized electronic states
(LES) at the boundaries of the semiconductor crystallites and the matrix of the
insulating phase [2]. The influence of volumetric LES in such structures has not been
studied theoretically up to now.

At the same time, for several polycrystalline structures, in particular, metal oxide
varistor ceramics, contribution of volumetric LES to the ID current can be
considerable.

The presence of deep energy LES filled with electrons at the boundaries of
semiconductor crystallites (e.g., ZnO) leads to the formation of surface charges and
near-surface potential barriers (up to 1 eV or more) between the semiconductor
crystallites [3]. The change of the filling of such LES by applying real (not admitting
breakdown) polarizing voltage is usually insignificant, and needs more time for their
discharge. Therefore, a significant contribution to the formation of the observed (fast)
component of the ID current [1, 4] can be provided by volumetric LES of
semiconductor crystallites.

In this paper a model of the kinetics of ID current, which takes into account the
recharging processes for the volume LES in semiconductor crystallites is proposed. The
effect on the value of its polarizing voltage and temperature is also studied; and the
analysis of the information value of the model to obtain data on the characteristics of
bulk LES is performed.

Element of the polycrystalline semiconductor structure

The element of the polycrystalline structure for the one-dimensional model is a
layer of semiconductor material located in surface region. The region is isolated from
both sides by dielectric thin films of intergranular phase.

Applying the polarizing voltage produces the additional filling and, accordingly,
the devastation of surface and bulk LES that are energetically near the Fermi level and
spatially located in the border areas of both the semiconductor layer.

After the decline of the applied voltage to zero, the sample depolarization starts.
This process ends with relaxation to the initial filling of LES. The dependence of
depolarization current versus time provides information on the nature of mentioned
electrical transients [1, 4-6].

In order to concretize model, we consider a one-dimensional structure,
characteristic for a metal-oxide varistor ceramics [3]. It includes a semiconductor layer
ZnO with a thickness of d_ ~ 10 pm located between two thin films of thickness d, ~
20 A of the dielectric intergranular phase. It is assumed that the charging occurs mainly
for electron transitions between LES and the conduction band of ZnO.

It is necessary to solve two problems in the simulation. The first problem is to find
the potential distribution and function of electron filling of surface and bulk LES in the

crystallites in a steady state of polarization (for different values of voltageV =V, ).
The second one is to determine the dependence of these functions on time for the

transition of the initially polarized object in equilibrium with its short-circuit (V' =0)
using the kinetics of the ID current.
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The model equations
The polarization state

Equations, that determine a steady-state polarization, are the equations of continuity of
the electric charge displacement at the boundaries of a single insulator-semiconductor
structure element (coordinates of the boundaries of the semiconductor layer x =Fd, /2,

point x = 0 corresponds to the middle layer)

14 d
86— = E08y— +eNg fs|i=a)2 (1)
dg x| g /2
d V,
E9E3— =¢gpe; ——+eN 2
0¢s dx vdy 2 0¢d dd SfS|x=dS/2 ( )

with the first integral of the Poisson equation for the space charge region of the form

d kT kT .
e e—LF(Y) = e—Lszgn(— Y)x

. e
X{I{V[(fV(y)—fV(0)+eXp(y)—1]—pVO[eXP(—y)—ll}dy} |

oMo Ny o

where N, — surfactant concentration (index g =) and bulk (index ¢ =) donor LES,
composite index q is used in a similar manner, and then to describe the surface and

volumetric parameters; f, ; — the electron distribution function in the LES (at equilibrium

Fermi function); Y=e(¢@-@ o)/kT, ¢, — level of capacity in the semiconductor; n,, and
Py — the concentration of free electrons and holes in a semiconductor crystal; & and & —

the relative dielectric permittivity of the dielectric intergranular phase and a
semiconductor; g, — electric constant; e — the absolute value of the electron charge; k —
Boltzmann constant; 7 — temperature; V, =V —[ (d,/2)- (=d,/2)] ; V=Vpor, Vror —
the value of the polarizing voltage applied to the unit cell of a polycrystalline structure; x
— coordinate along the axis orthogonal to the layers of a single structural element.

The numerical solution of the set of nonlinear equations (1) — (3) provides the

potential distribution Y (POL)(x) and the distribution functions of electrons on surface
fS(POL)(i dg/ 2) and bulk f,,(POL)(x) LES for the polarized structure element of
polycrystalline semiconductor.

Kinetics of depolarization

Kinetic equations describing the recharging LES during depolarization written on
the basis of the Shockley-Read-Hall statistics [7] have the form

df, (x,t)/dt =Cpy {Kl ~ 1y (x,t))~ n(x,t)—fq (x,t)nqu} 4)

where n,, = N eXp(— AE, / kT ) — the concentration of electrons in the conduction band,

reduced to the level of E,, AE, — ionization energy, Nc— effective density of states in the
conduction band of the semiconductor; ¥’ (x,t) and n(x,t) =Ny exp[Y (x, t)] - potential
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profile (band bending) and the concentration of free electrons in the space charge of the
structural element of the semiconductor crystallites; ¢, - coefficient of electron capture

LES (¢,, =0, Uy / g, 0,, — the effective capture cross section, Uy - average thermal

velocity of the electrons, g - the degeneracy of LES.
The initial conditions for the surface and bulk LES are

fS(ids /2): SPOL(ids/z)ﬂ
Sy (6,0)= 17 (x)
Y(x,
The dependencies Y(x,¢) are found by the equation integrating = (j tgly/FLv(t)]

YpoL (x)
where Y., (x) is the solution of the set (1)—(2) with using the expression (3) for the first

©)

integral of the Poisson equation, L — Debye screening length of an intrinsic
semiconductor. The depolarization current density caused by the recharging of the surface
and bulk LES can be written as

le(f) = jg)(f)ﬁL J'%)(t) =eNg d[fs(_ ds/2,t)—fs(ds/2,t)]/dt +
) /(2)
+eN, jf{d[fV (c,0)] ek — N,y jf{d[fV (c,0)] Y,

where L(Slg u L(Szc) are thicknesses of space charge regions located near the left and right

(6)

edges of the semiconductor layer.

Overall analysis of the expression (6) is complicated and can be carried out only
approximately with using numerical methods. However, given the idea that the near-
surface space-charge region is formed deep ("slow") levels [3] (LES with the long
relaxation times, which, in particular, also confirmed by the study of thermally stimulated
depolarization currents [8]), can be considered as the potential distribution in the

crystallites during depolarization Y (x,l‘)z Y(x). This allows obtaining the analytical

solution of the kinetic equation (4) and equation (6) for the surface and volume ID
currents explicitly

Jw(6)= 5 O+ 71, ()= j§ - expl=t/z)+ ji-expl=1/z,) ()
where 75 =[c,s(m5 +ng )] g =le (my + )] B
) =—eN g5 [ (= d, )2)- £7d, f2)];

Lgc
O =—eN, 7 - [0 (x)= 4400 (x)]
0

Lgc = ’”‘”‘(L(sl)c ) )5

L(Slé and L(SZC) are the thicknesses of the left and right areas of the space charge
polarization in the semiconductor crystallite.
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Functions V(ﬁm)(x) u ,/(QOL)(x) correspond to the LES charge on one side and

their discharge on the other side of the semiconductor layer.
For the equation (7) it is accepted that the resulting volumetric component of the
depolarization current j%)(t) can be approximately determined by its maximal

component. This component is caused by LES. Its energy level is crossing the Fermi level
[9]. It’s supposed that n,(x)~n,, and 7, (x)= 7pp.

The kinetic and spectral dependences of depolarizing current
Theoretical kinetic dependence of the isothermal depolarization current j;(¢) of the
polycrystalline semiconductor element of structure obtained on the basis (7) is presented
in Fig. 1. The corresponding spectral dependences ./, (a)), as shown in this figure, are
found using the direct sine-transform of Fourier:

Tip(@)= " imle)sinfo-okit =13 (0)+ /o) ®

where @ - cyclic frequency (0¢[0, ©]), a J%) (@)= (2j(()q)/7r) x a)/la)2 + (l/rq )2 J

The left (low-frequency) maximum of spectrum corresponds to the surface LES, and
the right (high-frequency) one — to bulk LES. In the calculations, the values of the
parameters are for metal oxide wvaristor ceramics based on ZnO: AE, =0.2 eV;
Ny=10" sm'3; ¢, =107 sm*/s and AEs=0,5 eV, Ng=10" sm’z; cs=10" sm3/s; nyo = 10"
sm’; nyo>> pro) [8]. As can be seen, there are two relaxation areas in the kinetics j;p(?).
They are characterized by times 7y and 7y depending on the capture coefficients c,, and
ionization energies AE, of LES. The first area (fast) is associated with the recharging of
bulk LES, and the second (slow) one — with recharging surface LES, i.e. 7, << z5. If 7~ 75,
then these areas are overlapped.

log Jip (@)-10°, A-c/em? log Jp (®)10°, A-c/em?
1.5 F 4 1Lk )
log jip , A/cm? 3 ! 3
2 3 4 Tr log jio, A/ cu’ 123
L 5 05}
5F
/ 05 -5
0 1
o LA ! -5 0 5
1ok .5 0 5 log ®, pad/c
log @, pad/c -10F
_15 1 1 1 1 1 _15 1
-4 -2 0 2 4 6 4 -2 0 2 4 6
logt ¢ logt, ¢
a) b)

Fig. 1. Time ] D (Z‘ ) and spectral J D (a)) dependences of isothermal depolarization current of

structural element on Vpp;,.V:1—-0.5;2 —-5;3-10;4 — 15 at 7=300 K (a) and temperature 7, K: 1 —
2705 2 -300,3 - 330 at Vpo, =3 V (6)
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According to this in the spectra J 10(0)) there are two dispersion areas: high-

frequency region is associated with recharging volume LES and the low frequency one is
due to the recharge of surface LES. For the frequencies of their maxima we have in
accordance with (8)

o) =1/, . 9)

With increasing polarization voltage Vp; the dependences jg)(t) and J gg)(a)) are
lifted up (current increases in absolute value) to a limiting value corresponding to full
charge of surface LES on one side of the semiconductor layer and full discharge on the
other. With increasing of polarization voltage Vp,, the absolute value of the bulk

component of the current density of depolarization j,(p(t) and its maximum range

J 1([’;)(0)) increases. However, the saturation is not observed.

The growth temperature T increases the amount of ID current and speed
depolarization. The temperature dependence of the frequency wm.x(7) are straighten the
coordinates (log(a)max), 1/T). The activation energies conform to the calculation of

ionization energies of the bulk and surface LES.

Parameters of localized states

The model gives the relationship between the parameters of bulk LES, relaxation
times and ID current in a form similar to that in [2] for surface LES:

Int, =-Inc, N +4E, [(kT) . (10)

The temperature dependences ,(7) or 6{)1(1;73)X (T) can be found from the spectral
curves for the depolarizing current obtained at different temperatures. From Eq. (10) the

formula follows for determining an ionization energy and capture coefficient of free
electrons for the bulk (and surface) local electronic states:

AE, =In(10) -k - A[lg 7,(T)x T2] [A0/T) ; (11)
eug(T)=[e,(T)- Ne (D)} - explaE, J(kT)). (12)
Conclusions

In polycrystalline semiconductors with relatively high intercrystallite potential
barriers isothermal depolarization currents depends on the recharging of both bulk and
surface localized electronic states.

It is determined:

- the presence of two relaxation areas in the current spectrum and kinetics of
isothermal depolarization due to charging volume and surface localized states, with the
fast or, correspondingly, high frequency region is associated with charge of bulk LES,
and slow or low-frequency region — with recharging surface LES;

- increasing the time and spectral dependencies to some "marginal" for the surface
and the absence of "limit" for the volume dependencies of LES with increasing
polarization voltage in the operating voltage range.
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It is shown that the kinetic and spectral dependencies of the isothermal
depolarization current obtained at different temperatures can be used to estimate the
ionization energy and the temperature dependence of the capture coefficient of bulk (and
surface) LES in semiconductor crystallites.
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DIELECTRIC PROPERTIES OF POLYMER COMPOSITE MATERIAL BASED
ON VANADIUM DIOXIDE

Results of investigation of the dielectric characteristics of “polyethylene-
vanadium dioxide” composites with different volume fractions of filler within the
radio frequencies range and the temperature range of 30-90 °C are presented. The
two dispersion regions are found. The high-frequency region is due to the
Maxwell charge separation on the boundaries of the polyethylene matrix -
conductive filler of the crystallites VO,. The low frequency region is associated
with the presence of the transition layer at this boundary.

The semiconductor-metal phase transition is observed in the frequency
dependence of the electrical conductivity of composite. This transition is realized
in the filler particles of vanadium dioxide.

With increasing temperature, the relative permittivity of the composite has
a tendency to the absolute value decrease. An increase of high-frequency
electrical conductivity and a reduction of the dielectric relaxation time are
observed.

Keywords: composite, polyethylene, filler, vanadium dioxide, permittivity.

IpeacraBiieHbl pe3yabTaThl HceaeJ0BaAHUS AUITEeKTPHYECKHX
XaPAKTEePHCTHK KOMMNO3HTOB MNOJHITHJIEH-IHOKCH]I BaHAAUSA ¢ Pa3JUYHBIMH
00beMHBIMHM JOJNSMHM HAaNOJHHUTeJNd B AHANA30HE¢ PaJHOYACTOT U TEMIEPATYPHOM

auamazone 30 - 90°C. O0Hapy:xuBawTCsad JgBe JAHCHEepCHBbIe o0JugacTH.
BbicokoyacToTHas 006JacTh 00ycJOBJIEHA MaKCBEJJOBCKHM pa3ieJleHHEeM 3apsja
Ha rpaHune NMOJHITUIIEHOBAS MaTpuna —  NOpoOBOASIIMIL HANOJHHUTEJb

(kpuctanauntel VO,). Hu3zkouyactoTHas 00JacTh CcBA3bIBaeTCss ¢ HaJHYHEM
NnepexoJHOr0 CJOS Ha 3TOW rpaHume.

B 4YacTOTHOI 3aBHCHMOCTH J3J1eKTPONPOBOAHOCTH KOMIO3HTOB MNpOfABJIsieTCS
¢pasoBblIii nepexon mertana-noaynposoanuk (®IIMII) B HamoaHuTeE.

OTHoOcuUTenbHAsm JHUIJIEeKTpHYEeCKAas TMNPOHHIAEMOCTb KOMMNO3UTAa HMeeT
TEHACHUHI0 K CHHXKEHHI0 N0 a0COJITHOH BeJHMYHHEe C POCTOM TeMIepaTypbl.
Bpicoko4yacToTHasA »JJeKTpHYecKassi NPOBOAMMOCTb YBeJHYHBaeTcss, a BpPeMEHH
peJaKCcalMH ANDJIEeKTPHKA COKpallaercs.

KnwueBble cJ0Ba: KOMIO3HUT, MNONHATHUIEH, HANOINHHUTENb, AHOKCHUA BaHAOHA,
OUAIEKTPHUYECKast MIPOHUIAEMOCTD.

IIpeacraBiaeHi pe3yJabTaTH AOCHiIJKeHHS JieJeKTPUYHUX XapaKTEPHCTHK
KOMMNO3HUTIiB MNoJieTHJeH - JBOOKCHJ BaHaAil0 3 pPi3HUMH 00'€éMHHMMH 4YacTKaMu
HANOBHIOBa4Ya B Aiama3oHi pagioyacTror Ta TemmepatypHomy aiamasoni 30 — 90°C.
Busapaeno aBi paucmepcHi oO0aacti. BucokouacTtrorHa o0JgacTh 00yMOBJEHA
MaKCBEeJOBCHKHM pO3aiJIeHHAM 3apsily Ha rpaHUNi NoJieTHJIeHOBa MaTpuusa —
npoBigHMii HANOBHIOBAY (kpucraaitu VO,). HuzbkouacTroTHa ob0aacTh
NOB'A3Y€EThCH 3 HASIBHICTIO MepeXiJHOro mapy Ha uid rpanuui.

Y 4YacToTHiii 3ajJeXHOCTi eneKTPONPOBiAHOCTI KOMNO3UTIB NPOABIAAETHCSHA
¢pa3zoBuii mepexin meran-nanisnpoBignuk (PIIMH) B HanoBHIOBaui.

BinnocHa fgieseKTpMYHA NPOHUKHICTP KOMNO3UTY Ma€ TeHAEHUi 10
3HUKeHHS 3a a0COJIOTHOI0O BEeJHYHHOIO 3 POCTOM TeMmepaTypu. BumcokxodacTtoTHa
eJeKTPHUYHA NpPOBiaAHicTh, 30inbmyeThcsi, a 4ac peaakcanii pgieaexkrpuka
CKOPOYYEThCH.

Knw4yoBi caoBa: KOMIO3HUT, MOJi€THIEH, HANOBHIOBAaY, JIBOOKCHJI BaHaiilo,
NieTeKTpUYHA MPOHUKHICTH.

© E. V. Antonova, A. S. Tonkoshkur, V. A. Kolbunov, 2013
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Introduction

Recently, polymer composites with conductive fillers, in particular carbon-based
system in a polyethylene matrix, have found application as self restoring fuses and
posistors [1, 2]. Use as a filler material with a phase transition of the semiconductor-metal
could eventually allow the development of electronic elements, which apart protect
against current overloads and high temperatures also implement other functions including
shutdown at low temperatures.

In order to develop the optimum technology for producing such composites one
need information about their electrical properties at alternating current and physical
processes responsible for them.

This paper presents the results of investigations of the dielectric characteristics of
polyethylene-vanadium dioxide composites with different volume fraction of filler in the
radio frequency and ranges of temperatures 30-90 °C.

Samples and methods of investigation

The initial components of the composite were fine crystalline vanadium dioxide
(VO,), obtained by reduction of vanadium pentoxide (V,0s) with carbon [3], and high-
density polyethylene LDPE (15803-020).

The process of synthesis of polyethylene -VO, composites was performed using the
technological scheme, similar to the technology of making self recovering fuses of the
PolySwitch type [1].

The volume fraction of filler P, was varied from 25 to 60 volume per cents. The samples

had a cylindrical shape with the base diameter of 10 mm and the height of about 1 mm.

The dielectric characteristics were performed with a Q meter BM-560 in the radio
frequency range (50 kHz to 10 MHz). Studies have shown the near-electrode phenomena
that the measured electrical values are determined by the bulk properties of the samples.

The sample was placed into thermostat for studying the temperature dependences.
Data registration was carried out after the establishment of the thermodynamic
equilibrium of the sample with the environment.

Experimental results and discussion

Fig. 1 shows a typical frequency dependence of permittivity &'(f) and electrical
conductivity & (f) of composites with different percentages of vanadium dioxide. As seen,
dielectric dispersion takes place in the test frequency range.

A decrease of dielectric permittivity €’ and the increasing of electrical conductivity ¢
with increasing frequency f at a constant temperature at low volume fractions VO,

( Py <50%) were observed. Conductivity values depend weakly on the frequency f (see

Fig. 1b, curves 4 and 5) with a higher filler content P, . The resulting regularities are also

observed at other temperatures of the investigated range.
Dependences of €' and o on the volume fraction of filler are shown in Fig. 2. As can
be seen, relative permittivity and specific conductivity increase with increasing volume

fraction of filler p,, .

The values of rapprochement o, measured at different frequencies and the same
temperature at high frequencies with increasing p,, is observed. It should be noted that

the change in electrical conductivity of composite samples at the transition through
temperature of VO, PTMS (68 °C) is not very high (less than one order) [4].
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Fig. 1. The frequency dependence of the relative dielectric permittivity and conductivity of samples of
composites based on polyethylene with different volume fractions of filler — vanadium dioxide
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Fig. 2. The dependence of the relative dielectric permittivity (a) and conductivity (b) of composites
based on polyethylene on the volume fraction of filler — vanadium dioxide at 30°C and 90°C

The effect of temperature on the dielectric spectra of the investigated
composites is shown in Fig. 3.

It should be noted that the appearance of a minimum in the frequency
dependence of the dielectric loss &" (Fig. 3b) was previously observed in other
studies [5]. The presence of the minimum indicates the manifestation of two
relaxation processes in the frequency range under consideration.

Decrease in values of &' to those of the order of several units (Fig. 3a)
indicates the Maxwell-Wagnerian nature [6] of high-frequency dispersion region.

The most likely reason of the low-frequency region dispersion is the presence
of transition layers in the studied composite and polarization processes associated
with them, as investigated and observed in other similar composites with conductive
fillers [2, 7]. This assumption proves to be true because of anomalously high values
of the low-frequency relative permittivity of the investigated structures.
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The absolute value of the low frequency &'(f) is much higher than the values
given by the two-component theory of dielectrics with conductive inclusions. So
our calculations were performed with the use of the most correct well-known
Bruggeman-Hanai formula & = &pg /(l— py )3 [4] where &pg is a relative

permittivity of polyethylene matrix &pg =2 [2], and P, is the volume fraction of
filler VO, (py = py /100=0.3 for the data in Fig. 2, 3). They result in the value
&f, =~ 6 that is significantly less than obtained in the experiment.

With temperature increasing to the temperatures in the range of the phase
transition VO, (<68°C) the observed decrease in the absolute value of the relative
permittivity of the samples corresponds to the thermal expansion of the
polyethylene matrix [2].

Dispersion curves of 8'(f) and 5”(f) before PTMS (curves 1, 2, and 3 in Fig.

3) have fuzzy character that corresponds to a relaxation process with a wider scatter
of relaxation times. Thus PTMS leads to increased homogeneity of the filler
particles VO, at the electrical properties (conductivity).

& a log £" b
i 13096
)

i

20

i | | | | | -0s 1 | | | |
4.5 5 55 4 (] T 45 5 55 [ 6.5 T

logf, Hz logf, Hz
Fig. 3. The frequency dependence of the relative dielectric permittivity (a) and of the dielectric loss
factor (b) of the composite sample based on polyethylene with a volume fraction of 30% of the
vanadium dioxide at a temperature, °C: 1 -30; 2 —50; 3 — 70; 4 — 90.

Conclusions

Dielectric characteristics of “polyethylene - vanadium dioxide” composites
with the volume fraction of filler from 25 to 60% show two dispersion area at radio
frequency and temperature range from 30-90°C. The first one is the high-frequency
region to be explained by the Maxwell charge separation at the boundaries of the
polyethylene matrix-conductive filler of the crystallites VO,. The second one is the
low-frequency region associated with the presence of the transition layer at this
interface.

In the frequency dependence of the electrical conductivity of the composites a
phase transition semiconductor-metal occurring in the filler particles of vanadium
dioxide is manifested. There is an increase of high-frequency electrical conductivity
and reduced the set of the dielectric relaxation time.
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CRYSTALLIZATION KINETICS UNDER CONDITIONS OF THE QUENCHING
FROM A LIQUID STATE

The model of bulk crystallization of the flat melt layers is presented. The model is based on the
approach, according to which the processes of nucleation and crystal growth are carried out with
effective rates proportional to the volume fraction of the parent phase. Contributions to the
transformed volume fraction of x crystals nucleated at considerable distances from the surface of the
film, and holding out initial spherical shape during the whole period of consolidation and also the
crystals, arising on the near-surface critical areas that undergo the blocking effect of the surfaces and
acquires the shape of truncated sphere are estimated in this model. The calculation analysis of
crystallization Kinetics of the Feg)B,y melt layers with thickness /, = 70 um, cooling on a massive copper
heat receiver, is made with using the proposed model. It is shown that an increase in the critical areas
of /, relative volume occupied by truncated crystals increases, and at /,/7, > 0,285 their contribution to
the overall share of the transformed volume becomes dominant.

Keywords: thin layers of melt, mass crystallization, the blocking effect of surfaces, spherical
crystals, truncated crystals, contributions to the transformed volume fraction.

IIpencraBiiena MoJeIb MAacCOBOH KPUCTAIM3AIMM IUIOCKHUX CJI0€B PacIuiaBa MaJjioil TOJIIMHBI.
Mopens 0a3upyerci Ha NPUOJIMIKEHHH, COIJIACHO KOTOPOMY IIPOIECCHl 3apo:KAeHUs] W pocTa
KPHCTAJJIOB OCYLIECTBJISIOTCS ¢ 3(peKTHBHBIMH CKOPOCTAMH, NPONOPUHOHAIBHBIMH 00BEMHOIi 1071
MaTepuHCcKOii ¢a3bl. B Moaesn oneHUBaIOTCS BKJIAAbI B 10110 IPEBPALLIEHHOI0 00beMa X KPUCTAJLIOB,
3apOKIAIOLIUXCH HA 3HAYUTEIbHBIX YIAJEeHUSAX OT MOBEPXHOCTEl NJIeHKH H COXPAHAIOLIUX B TeUeHHe
BCEro nepuoja 3aTBepAeBaHusA HCXOAHYIO cepuyeckyio ¢popmy, a TaK:Ke KPUCTAIOB, 00Pa3yI0IINXCS
B MPHUNOBEPXHOCTHBIX KPHUTHYECKHX 30HAX, KOTOpPble WCHBITHIBAT OJOKHpYOIIee eiicTBHe
NnoBepxXHocTell U npuodperaioT gopmy yceuenHoii cepsnl. C ucnop3oBaHHEM NPeII0KeHHON Moaen
BbINOJIHSAETCS PACYeTHbIN aHAJIN3 KMHETHKH KPUCTALIM3AINU cJioeB paciiiaBa Feg B, Tonmunoii /, =
70 MKM, OXJIQXKAAIIMXCSI HA MACCHBHOM MeJHOM Temonpuemuuke. IlokazaHo, 4uTo ¢ pocrom
TOJIIUHBI KPUTHYECKUX 30H [, OTHOCHTEJIbHBIH 00beM, 3aHATHIH YyCeYeHHBIMH KPHUCTAJIAMH,
Bo3pacraer u npu [/, > 0,285 ux BkjIag B OOLIYI0 [0JI0 NPEeBPalleHHOro 00beMa CTAHOBHUTCS
JOMHMHUPYOLIUM.

KiawueBble cJj0Ba: TOHKHE CIIOM pacilaBa, MaccoBas KpUCTAUIM3alus, OJOKUpYOIIce
JNeCTBUE TOBEPXHOCTEH, CPEpUUYECKHE KPHUCTAJUIBI, YCEUCHHBIC KPUCTAIUIBI, BKJIAABl B JOJIO
MpeBpaneHHOTO 00beMa.

HaBoauthcss MoJeab MacoBOI KpHcTadizamili mJIOCKHX ImapiB po3miaaBy MaJjol
TOBIIMHH, IKa IPYHTYETbCH HAa HAOJMIKEHHI, 3rilHO 3 AKUM NpOLeECH 3apPOAKEHHA i pocTy
KPHCTAJIIB 30iiCHIOIOThHCA 3 eeKTHBHUMHU WIBUAKOCTAMH, NponopuiiHuMu 00’emMHii yacTui
MaTepuHCbKOTI ¢azu. Y moaesi OMiHIOIOTHCA BHECKH B YacCTKY NMepPeTBOPEHOro 00’emy Xx
KPHCTAJiB, 0 3apOAKYIOThCA HAa 3HAuyHiil BigcTrani Big nmoBepxoHs miaiBkM i 30epirarThb
NpOTSATOM YChOro mepiony TBepAiHHA BHXigHY cpepuuyHy dopmy, a TaKOkK KPHCTaAJiB, 10
YTBOPIOIOThCSl Y NPUNOBePXHEeBUX KPUTHYHHX 30HAX, AKi 3a3HAI0Th 0JIOKYBAHHS MOBEPXOHb
Ta Ha0yBawTh ¢opmu ycidyeHoi cdepu. 3 BHKOPHCTAHHAM NpeaCTaBJeHOI Moaesi
BHKOHYEThCS PO3PaXyHKOBMIl aHaji3 KiHeTHKHM KpHcTadizanii mapis posmiaaBy FegoB,
TOBIMHOKW [, = 70 MKM, fIKi 0XO0JIOJKYIOTbCH HAa MACHBHOMY MiAHOMY TeIlonpuiimaui.
Iloxka3zaHo, MmO 3 PpOCTOM TOBIIMHU KPUTHYHHUX 30H [, BigHOCHUH 00’eM, 3aliHATHH
yciueHMMH Kpucrainamu, 3pocrae i npu [/l, > 0.285 iXx BHecOK Yy 3arajbHy 4YacTKy
NepeTBOPEHOro 00’ €My €Ta€ JOMiHAHTHHM.

KuarodoBi ciioBa: TOHKI Imapu po3IUIaBy, MacoBa KpHUCTami3awis, OJIOKyodYa [is MOBEPXOHb,

chepudHi KpUCTaIH, yCi4eHI KPUCTAIH, BHECKH B YaCTKY IIEPETBOPEHOTO 00’ eMy.
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Introduction

The classical theory of mass crystallization is based on the kinetic equation of
Kolmogorov [1] obtained under the assumption that the linear dimensions of individual
crystals is incomparably smaller than the characteristic size of crystallized volume. This
assumption is valid for the traditional metallurgical production processes of metal ingots
and castings of large cross-sections. However, it does not hold under the conditions of
quenching from the liquid state when the melt takes the form of a flat layer, the thickness of
which is comparable with the size of the formed crystals. It is obvious that in this case the
analysis of the crystal growth processes one should be taken into account not only the
retarding action of neighboring particles, which is provided both by the classical model [1]
and by the model based on the approximation of effective rates of crystal nucleation and
growth [2—4], but also the possibility of the limiting size of those crystals that during the
consolidation reach the layer surface has to be analyzed.

To solve the specified problem with developing the model [2], an improved model
of crystallization of thin layers of melt is presented in the present paper, which allows
evaluating the contributions to the transformed volume fraction of the two types of
crystals forming in the central and near-surface areas of the layer. The calculation
analysis of the mass crystallization kinetics of the FegoBy melt layers of 70 um thickness
cooled by a massive copper substrate is made with the proposed model use.

Statement of the problem

Let us consider a liquid metal film of volume V, and thickness /,, which is cooled
rapidly by the heat removing to the substrate (Fig. 1). Let us assume that by the time #,, the
melt achieves the melting temperature 7,,, the regular cooling mode is set in the film [5],
and the whole volume simultaneously goes into the supercooled state.

At temperatures 7 < T,, the film starts crystallizing by homogeneous nucleation and
the further isotropic growth of the formed crystals. In the simplest version of the model
we shall assume that the points lying within the melt volume and its surface are
equivalent in their crystal-nucleating ability, i.e. at all points including surface ones a
single mechanism of spontaneous nucleation operates.

Melt

Substrate

Fig. 1. Derivation of the kinetic crystalllzatlon equation of a thin melt layer that is cooled on the heat
conductive substrate: 1 - 4 — hypothetical spherical crystals nucleated at a moment ¢,<#<t, at
different distances /; from the surfaces of the film; /, — width of the critical near-surface zones.
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Under such conditions of rapid quenching the transformation occurs in the
temperature range from 7,, to a final value 7, when the crystallized mass growth stops
because of the complete exhaustion of the liquid phase or due to the material transition into
the solid amorphous state. In the latter case the temperature 7, takes the sense of the glass
transition temperature 7. In the time scale the crystallization process takes a range of #,, - f,.

Let us assume that the nuclei have a spherical shape inherited by crystals in their
free growth at an effective rate:

Uefr = (1=x)u (1

where x is the volume fraction which has undergone transformation; u is the real rate of
crystal growth.

As shown in [2] by means of the approximation (1), the processes of the crystallization
retarding through mutual collisions of neighboring crystals can be modeled.

The other factor limiting the free growth of crystals in a restricted volume is their
interaction with the film surfaces. The blocking effect of the surfaces is experienced only
by the fraction of crystals increasing with the growth ratio of the total surface area to film
volume. Indeed, as schematically shown in the Fig. 1, the crystals nucleated at ¢ = ¢’ at
large enough distances from the surfaces /; > Iy, (crystals 1, 2 in Fig. 1) hold the shape of
spherical particles at any specified time ¢' < ¢ < ¢#,. Therefore, the contribution of each
crystal V,(¢, f) to the total volume subjected to the conversion may be determined
according to the formula for the volume of a sphere:

1 (t',t)=§ER3(t',t) )

where R(¢', {) is a radius for a crystal nucleated at the moment ¢' and growing till the
moment ¢ with the effective rate u,.
It is obvious, that

t

R(t',0) = Ry (1) + [ (L= x{e" e )att” (3)
Y
where Ry is a radius of critical nucleus; ¢/ <t <t¢.

On the other part, if crystals arise in near-surface critical zones (crystals 3, 4 in Fig. 1),
at some time moments ¢ < ;< ¢ they grow up to the nearest surface of the film that prevents
their further growth in this zone. Quantitatively, this effect can be evaluated through setting
to the considered crystals a truncated sphere form corresponding to the shape of the smaller
final volume 7,

V,(t'1) =§(2R3 (', )+ 3R> (¢, 1) - 1. (', 1) - I3 (¢',1)) (4)

where /i(¢', f) is a distance from the centre of a crystal forming in the critical zones to the
blocking film surface.

The width of the critical zones can be found from the condition that it is equal to the
radius R, of crystals nucleated at a moment ¢’ on their boundaries (crystal 2 in Fig. 1) and
then growing isotropically in interval #- ¢ according to Eq. (3), i.e.

I (2, t)=R(t,1). 5)
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Derivation of kinetic equation

On the basis of the above considered principles of modeling, we can derive the kinetic
equation taking into account the specifics of crystallization processes in thin layers.

Let us suppose that at time ¢, < ¢ < ¢, a crystallized volume fraction is x(#') and
determine the number of critical size nuclei Rg(#') arising in the areas of location of the
parent phase for a small period of time between ¢’ and #'+dt’

dN(t') =V, (1= x(@)NI(")dr’ (6)

where /(¢') is a frequency of nucleation per volume unit in the parent phase.

This total amount includes both nuclei arising away from the surface (dN;) and ones
with nucleation centers in the critical near-surface zones (dN,). So far as by hypothesis
the nucleation processes are equiprobable at all points of the melt layer, the quantities
(dN;) and (dN>) will be proportional to the relative volume of the considered parts of the
film, i.e.

dN (t',t) = (1 —MJdN @, (7)
dN,(t',t) =2l+f’t)dN(t’). (8)

o

Further we define the value of the crystallizing volume increment provided by
crystals nucleated within a specified short time interval in two zones of the film:

dv,(t',0) =V (¢, 0)dN, (t',1) , )
av,(t',t)=V,(t',t)dN,(t',t) . (10)

As follows from Fig. 1, the parameter /(¢', ¢) involved to Eq. (4) varies from 0 to
R(?, t), wherein, according to the model used, each act of the new center of crystallization
forming in the critical zone is connected with one of the values of /(7' ¢) from the current
interval. For simplicity of choice procedure of possible critical distances /(z', ) we
assume that they change with time according to linear dependence in the form:

L, t)y=R(,t)-(t' —t,) (t—t,). (11)

This means, that at the initial moments of crystallization (' — t,,) (¢, {) > 0, i.e.
nuclei arise at the film surface. With the course of time, the distance /(#, f) increases from
0 to R (7, ?). It is equivalent to the shift of the layer, where the centers of crystallization
arise from the surface to the boundary of the critical zone.

Specification of the dependence behavior /(#, f) allows us to calculate the values
dVi(t, ') and dVy(¢, t') and by means of them the film volume fractions formed by the
crystals of the central (x,(f)) and adjacent to surfaces (x,(f)) zones at any defined time
moment £, <t < 1,:

L,

Im

x, ()= %ﬂ'j(l - ZMJ(I —x(t")-1(¢")-R*(t',0)dt’, (12)
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x,(t)= %nj[@] A ) - =x(t")-I1(t)- R (¢, t)dt’ (13)

Im

where AW ) =243t =)t —1,) = (¢ = 1) [(E—1,)))° . (14)

By summing the values x;(f) and x,(¢) with taking into account Eq. (3) we obtain the
total volume fraction of the crystalline phase:

/

o

x(t)= iﬂj(z + AU (At - 4)}(1 —x(¢)-1(t") (R,\_ @)+ j(l —x(t")) ~u(t")dt"j dt' (15)

m

The results of model calculations

Eq. (15) describes the kinetics of crystallization in the molten layers of small
thickness /, bounded by two lengthy parallel surfaces. In contrast to the well-known
Kolmogorov equation [1] derived concerning the strictly volumetric scheme of the
crystallization, Eq. (15) allows to take into account the contributions to the total
crystallized volume fraction x of two parts made by crystals emerging away from the film
surface (x;) and in the crystal in the near-surface zones (x;). As seen from Egs. (12) and
(13), the magnitude of these contributions depends on the ratio of the the critical bands
width /g and the layer thickness /,.

In order to analyze these dependencies in more detail the equations (12), (13) and
(15) were solved concordantly with the equations for heat conduction of the melt layers
FegoBy of /[, = 70 um thickness subjected to the cooling on the copper quenching block.
The calculations were performed by the numerical method of finite differences using
explicit difference scheme [6]. Temperature rate dependences of the nucleation and
crystal growth as well as the values used in the calculations of thermal variables were
taken from the paper [7]. Parameter A was taken to be equal to its average value of 3. The
width of the critical areas /x was assumed to be independent of time. In different series of
calculations we used fixed values Ik that belonged to the interval 0 — 0.5/,

Fig. 2 shows the estimated dependences x;(#), x»(¢) and x(#), corresponding to the two
values of the ratio /x/l,. As can be seen from the figure, the characteristic feature of the
obtained kinetic curves is a sharp change in slope at some time #,. The analysis of the full
array of calculated data shows that during the passage of the inflection point the
temperature of the crystallizing layer increases abruptly, verge towards the T7,; the
frequency of nucleation falls almost to zero, and the crystal growth rate value remains
high enough (u(t,) = 1.4 m/s). This leads to the conclusion that the crystallization process
is carried out in two stages. At the first stage (at ¢ < t,) the transformation arises at
significant supercooling of the melt by the nucleation of new crystals and their further
growth. At the point ¢ an intensive release of the latent heat of crystallization occurs, the
primary supercooling is removed, whereupon the formation of new nuclei is stopped and
the further volume fraction increase of the crystalline phase arises only owing to the
growth of previously nucleated crystals.

As follows from the comparison of Figs. 2a and 2b, the relative contributions to the
value x of the two crystal types considered in the model depend on the value of ratio /x//,.
Thus, in the films with relatively small width of the critical zones (/x/l, = 0.1), crystals
preserving the original spherical shape are mainly involved in the conversion (Fig. 2a).

120



A.B. Lysenko, O.L. Kosynska, G.V. Borisova, A.A. Kazantseva

For this example the final (at = ¢,) value x; is 0.83. With the increase in the ratio /x/I, the

growing contribution to the total volume fraction of the crystalline phase is made by
crystals that at a certain stage of the process reach the surface of the melt film and, in
accordance with the proposed model, take the form of truncated sphere. In particular, at

Ik/l,= 0.4 x5 =0.74 (Fig. 2b).
In summary, the dependence of valuesx; and xj on the specific width of the

critical areas Ix/l, are shown in Fig. 3. It is evident, that in the range Ilx/l, = 0-0.5 the
resulting truncated crystal volume fraction increases from 0 to 1, and the relative amount
of full-sized spherical crystals is reduced accordingly. If Ix/l, = 0.285, the equality of the

values x{ and x5 is reached, i. e. both types of crystals make equal contributions to x°.

1,0

0.8 - 1. L
.6 = -

04 IR

Crystallized volume fraction, x

0.0

0.8 1.4 0.8 1.0

Time, t 107, ¢

Fig. 2. Time dependences graphs of the crystalline phase amount for foils of /=70 pm thickness
atly=0,1/, (@) and Ix= 0,4/, (b): 1 - fraction of the crystalline phase made by a spherical crystals x;;
2 - fraction of the crystalline phase made by truncated crystals x;;

3 - the total fraction of the crystalline phase x

1,0

0.8

0.6

04

Crystallized volume fraction, x

02 -

0.0 | | 0,285 ) |
0,0 0.1 0.2 0.3 0.4 0,5 0,6

Fig. 3. The dependence of the crystalline phase fraction of the critical bands width /x:
1 - the fraction of spherical crystals x;; 2 - the volume fraction of crystals of a truncated form x;,
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Conclusions

In the context of the approximation of effective rates of nucleation and crystal
growth an improved model of mass crystallization of thin layers of melt, which takes into
account the blocking effect of the growing crystals surfaces of the film has been created.

Kinetic equations for the processes of formation of spherical crystals nucleated away
from the surface layer and crystals formed in the surface of the critical areas that undergo
the blocking effect of surfaces and acquires the shape of truncated sphere have been
derived.

The calculation analysis of crystallization kinetics of the FegoB,y melt layers with
thickness [, = 70 um cooled on a massive copper heat absorber has been made using the
supposed model. It has been shown that with the increase in the width of the critical areas
Ik the relative amount of truncated crystal grows and at /x/l, = 0.285 their contribution to
the overall fraction of the transformed volume becomes dominant.
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THE GROWTH KINETICS OF METALLIC CRYSTALS.
RESULTS OF SIMULATIONS

The correct values of the surface kinetics coefficients were obtained for systems of
Al, Cu, and Ni metals at sufficiently large sizes of nanocrystals in initial conditions.
The simulation based on the molecular dynamics method was performed with applying
our program for parallel computing and the LAMMPS program. We used the potentials
of the embedded atom type. We applied NVT ensemble, but the volume of samples was
not constant as they had free surfaces (they were smaller than the main cell). Our
results showed that the classical Wilson-Frenkel model was not able to describe
quantitatively the temperature dependence of the kinetics coefficients, and the
Broughton, Gilmer and Jackson equation was valid at temperatures close to the melting
point, not lower than 100 - 200 K. The temperature dependencies of the diffusion
coefficients for these metals in the supercooled liquid state were analyzed.
Discrepancies in the results of our simulation and the literature data were discussed.

Keywords: kinetics of crystallization, supercooled metals, diffusion, interfaces.

HosydyeHbl KOPPEeKTHBIC 3HAYEHHS KOI(PPHUIHEHTOB NOBEPXHOCTHOH KHHETHKHU AJ5
cucteM MeTtamiaoB Al, Cu, u Ni npu 3agaHuMm CpPaBHHTEJbHO OOJbIIMX pPa3MepoB
HAHOKPHCTAJJIOB B HAa4YaJbHbIX ycJd0BUAX. MoJeJHpoBaHHe MO MeTOAY MOJeKYJAPHOii
AMHAMHKH OBIJIO BBINMOJHEHO ¢ MPHMeHEeHHEM Hamlell MpOrpaMMbl AJsi HapajjaelbHBIX
BplyucjgeHuii u mnporpammbel LAMMPS. Bbplin HCHONB30BaHbI NOTEHUHAJABI THIIA
“morpy:xeHHoro” aroma. Mpl npumensaaun NVT ancam0ab, HO o0beM 00pa3umoB He Obla
MOCTOSTHHBIM, MOCKOJBbKY OHH HMeJH CBOOGOJHYI0 NMOBePXHOCTh (OBIIM MeHBbINE, YeM
ocHOBHasf siueiika). Hamm pe3yabTaThl moka3ajau, 4To Kjaaccudeckass Teopusi Buascona-
®peHkeJis He B COCTOSIHMM KOJHMYECTBEHHO ONHCATHL TeMNepaTypHYI 3aBHCHMOCTHb
KHHeTHYeCKHX Ko3ppuuueHTOB, a ypaBHeHue bpoyrxrtona, I'mamepa u J[Ixkekcona
cIpaBelJIUBO NMPH TeMOepaTypax, 0JM3KHX K TeMmepaType mJjaBjeHusi, He Huxke 100 -
200 K. ITpoanaau3upoBaHbl TeMOepaTypHble 3aBUCUMOCTU KodppuunentoB audpdpysnn
AJdSl YKa3aHHBIX MeTAJIJIOB B MePeOoXJa:KIeHHOM IKHAKOM cocTosHuH. OOcyKaeHBI
Pacxo:kJeHHS MeXAYy Ppe3yJbTaTaMH HAaMIero MOJeJHPOBAHHA W JHTEPATYPHBIMH
JaHHBIMH.

KnwuyeBble cioBa: KHHETHKAa KPUCTAJNH3alUM, TEPEOXJaXJCHHBIE METalllbl,
nudohysusa, mexpasHpie TOBEPXHOCTH.

OTpuMaHi KOpeKTHi 3HaYeHHs Koe(iunicHTIB MoBepXHeBOi KiHeTHKH AJsI CHCTeM
meTatiB Al, Cu, Ni 32 nopiBHSIHO BeJHMKHX PO3MipiB HAHOKpPHCTAJiB B NMOYAaTKOBHX
ymoBax. MoJaedBaHHS 32 MeTOAOM MOJEKYJSAPHOI AHMHAMiku O0yJ0o BHKOHaHO i3
3aCTOCYBAaHHAM HamoOi mNporpaMu JJsd napajejbHUX o0yucieHb i nporpamu LAMMPS.
Byau BukopucraHi moreHuniaaum tuny "3anypenoro" aroma. Mu 3acrocoByBaau NVT
aHcamM0Jb, OfHAaK 00’eM 3pa3kiB He OyB NOCTiiHMM, OCKiJIbKH BOHHM MaJH BiJdbHY
NMOBEPXHIO (0yam MEHIIHMHU 3a OCHOBHY KOMIipKYy). Hami pe3yJabTaTH
NpoOAeMOHCTPYBaJH, W0 KJAacH4YHa Teopia BiabcoHa-®peHkejss He B 3M03i KiabkicHO
ONMCATH TeMNepaTypPHY 3aJleKHicTh KiHeTHYHHX KoedinieHTiB, a piBHsAHHA Bpoyrxrona,
linmepa i [I:kekcoHa € cnpaBelJIMBHM 3a TeMmepaTryp, OJM3BKHX A0 TeMIepaTtypH
njaBjgeHHsi, He Hux4ye 100 - 200 K. IIpoananizoBaHi TemmepaTypHi 3ajesHocTi
koepinientiB audys3ii aaa nDHUX MeTadiB y MNepeoXoJIOAKEeHOMY pigkomMy cTaHi.
OOrosopeni po30iskHocTi Misk pe3yJabTaTaMH HAIIOIO MOJCJAIOBAHHS Ta JiTepaTypHHMH
AaHHUMH.

KawuoBi caoBa: kiHeTuka KpucTaiizauii, mnepeoxoyojxeHi Mertanu, audysis,
Mixda3Hi HOBepxXHi.

© A. M. Ovrutsky, A. S. Prokhoda, O. 1. Kushnerov, 2013
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Introduction

The kinetics of solidification controls the microstructure development of materials.
It is therefore essential to have detailed understanding and knowledge of the kinetics
during solidification of melts for improving production of metallic materials. To match
the value of the surface kinetics coefficient, intensive convection was ensured by electro-
magnetic devices in some experimental works.

It is known long ago that the surface kinetic coefficient B in the ratio Br= v/AT (v is
the growth velocity, AT = T, =T, T\, - is the melting temperature) is the value of order
1 m/(s-K) for pure metal at the temperatures near the melting point Ty, [1-3]. In the large
temperature intervals it is better to consider the dependence of growth velocity on the
surface supersaturation v(c) (o= Ap/kT is the relative supersaturation). In accordance
with Wilson—Frenkel theory [4,5] this dependence for a pure material can be written as

v =Bs[1-exp(-Apr /kT)] (1)
where [ is the kinetics coefficient, Aur is the difference of chemical potentials of two

phases at the temperature T. Furthermore, the coefficient B; can be expressed in terms of
the diffusion coefficient D of the liquid [6]:

B, =6faD /2> )

where A corresponds to an elementary diffusive jump distance of particles in the liquid, a is
the interatomic distant, prefacor f; represents the fraction of collisions with the crystal that
contributes to the growth of the crystal. It is assumed that the diffusion coefficient can be
expressed by an Arrhenius law, D=Doexp(—Q/kT). However, some experimental data for
pure metals (see Ref. [7]) allow arguing that their crystallization is not thermally activated.

Fedorov [3] had listed in his book some results of known experimental data concerning
the kinetics coefficients for growth of metal crystal from pure melts and the coefficients of
self-diffusion in these melts. After re-counting of Br to B, we can see that these values are
much greater than ones that can be evaluated according to Eq. (2) at f; =1. But the sizes of
growing crystals and surface supercoolings are not known exactly at measurements of
experimental velocities. These quantities are known exactly at simulations.

In recent years, MD simulations have been applied extensively to study kinetics and
thermodynamic properties of crystal-melt interfaces. It is important that nowadays
simulations give values of many physic-chemical properties, including diffusivity that
coincides well with the experimental values. The results of simulations for the Lennard-
Jones liquid [7], for Cu and Ni [8] and for gold [9], did not confirm the dependence (1) for
the surface kinetics. The kinetics coefficients calculated on the base of previous simulation
results differed essentially from estimations on the basis of Wilson-Frenkel theory. For
example, the authors of [9] have obtained the values Pri90=18.8%£1.0 cm-s 'K
Br110=12.6£1.0 cms 'K and Br111=7.0£1.0 cm-s 'K for different orientation of gold
crystals. The authors of [10] have obtained for Ni-crystals significantly smaller anisotropy
and somewhat higher values of Br for low index {100}, {110}, and {111} interfaces:
BT100:35-8j:22, BT110:25.52|:1.6, and BT111:24.1Z|Z4.0 1n units OfCI’Il/(S K)

The authors of [7] connected the kinetic coefficient with the average thermal
velocity (3kT/m)"? to explain the results of simulations of crystal growth in the LJ liquid:

v=f,(3kT /m)"/*[1 - exp(-Apy / kT)] 3)

where f, is a constant of the first order.
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Later, Mikheev and Chernov [11] have developed the density functional theory of
freezing for the case of crystal-melt interface, which is rather diffuse on atomic scale.
They proposed estimation, v=(kT/m)"> AT/T, after simplifications of their results.

In this work, we present the simulation results concerning the growth of metal
crystals from pure melts. The data are obtained in the large intervals of supercooling,
including the growth from the amorphous state. In addition, we consider the size effect in
crystal growth, i.e. the dependence of growth velocity on the crystal size. Our models
have free surfaces and contain sufficiently many atoms.

Details of the simulation

The MD simulations were fulfilled using our program for parallel computing and the
LAMMPS codes (large-scale atomic-molecular massively parallel simulator) [12]. In the
case of LAMMPS, we included into the data file the tables of EAM potentials conversed
by C.A. Becker (see http://www.ctcms.nist.gov/potentials/) into the dynamo format (each
table from 10000 points). In our program, the EAM tables from 5000 point each were
used. Parallel calculations were fulfilled by means of Graph processors (NVIDIA graphics-
cards) with the help of GPU software included in LAMMPS and CUDA software.

All simulations employed the Verlet algorithm [13] with a time step of 1.5 fs. The
weak thermostating for isothermal annealing was chosen in all cases; in our program, a
multiplier to velocity of atoms was 1£0.001sqrt(|T-T¢|/T) (T is a instantaneous
temperature, T; is the set temperature, sign “+” if T<Ty).

We applied NVT ensemble (constant number of atoms, volume of the main cell, and
temperature), but the sample volume was not constant as they have free surfaces (were
smaller than the main cell). The first step before simulations was preparing of samples for
simulations. Initial form of models was created in the auxiliary program. All atom
coordinates were passed in LAMMPS or in our program, and their melting was
accomplished (fully or partly). Two forms of samples were prepared. Kinetics of growth
of small crystallization centers (after nucleation) was studied in spherical samples with a
free surface (nanodrops of 16384 atoms). They were formed in a result of fusion of an
ideal crystal given in initial conditions at a temperature above the melting temperature in
100-200 K over a period of time >50 ps. Then they were quickly (1-2 ps) cooled to the
chosen temperature of annealing (to obtain statistics for “one” temperature, the set
temperatures for annealing were different slightly, 0.1 — 0.2 K). For analyzing the results
of simulations, we use the program that enables viewing with the step in one angstrom all
sections of the model with coordinates of atoms from saved files. The strong dependence
of growth velocities on the size of crystallization centers was found in [14].

To study growth kinetics of nanocrystals, oblong samples (of 32768 atoms) in the
form of cylinder with the structure of crystal phase were set in initial conditions (periodic
boundary conditions along one axis were applied). Then their larger part was transformed
into amorphous state by the way of many random displacements of atoms with further
quick heating above melting point and then quick cooling to the chosen temperature. The
nanocrystals of 5-7 nm in size (for them, the size effect is not as essential as for small
crystallization centers) with initial interfaces of (100), (110) or (111) crystal type were
able to grow at the constant temperature.

In addition, we can view many clusters of different kinds. Identification of clusters
was fulfilled with the help of LAMMPS software or in results of procedure running, which
determined the number of nearest neighbors and angles with nearest neighbors for every
atom, and gives a color for atom visualization dependently on a cluster type (see Ref. [14]).
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The values of the diffusion coefficients for Al and Ni and Cu at different
temperatures were determines by measurements of mean-square displacements of atoms
for the same potentials, which were used for studying of growth.

Results and the discussion

Relaxation processes occur in the supercooled melts after setting a certain
temperature for annealing. The waiting time for appearance of crystallization center is
larger than the time of relaxation. However, the measurements of growth velocities in
oblong specimens should be fulfilled after the structure relaxation. The results of
simulations for determination of diffusivity in melts of metals and growth velocities with
using modern potentials are in a good agreement with experimental data. Therefore, a
quantitative comparison of such data with predictions of theories is already opportune.
The table 1 contains simulated and experimental data on kinetic coefficients Br and s at
the melting temperatures, the values of magnitudes D, and activation energy Q, which
determine the temperature dependencies of the diffusion coefficients, and the values of
the coefficients f; and f, that are chosen for best fitting of kinetic coefficients by Egs. (1)
and (3). It is necessary to note that the values of Dy and activation energy Q are
determined for not terrific supercoolings of liquid — roughly up to 200 K. Data of Ref.
[19] give an evidence of the Arrhenius type dependence (constant Q) for copper in the
large temperature period. It is unlikely as essential changes in a structure of materials take
place near the glass-transition temperature.

Table 1
The simulated and experimental data on Kinetic coefficients By and 3, at the melting temperatures,
the values of magnitudes Dy and activation energy Q

Material | Br.m/(sK) Bs, De*10°, | QK | AH,K | Tn.K f, f,
m/s (m?/s)
Algim 0.50+0.02 369 4.45 2617 1288 975 6 0.3
(our)
Nigim 0.30+0.02 366 7.5 5480 2075 1600 9 0.475
(our)

0.39[15] 549 8.6[15] | 5751 | 2098 1718 | 69 | 0.64
[15]

Nieyp 0.2116] 284 7.7 [17] 5499 2098 1728 3.36 0.33

Cusim 0.65 (our) 592 4.5 3600 1301 1175 12 0.8

Cueyp 1.58 [18] 2149 5.7[19] 3883 1352 1356 29 2.96

It is clear that Eq. (3) approximates better the values of the kinetics coefficient near
the melting temperature (the value of f» is closed to 1). Fig. 1 shows the temperature
dependences of the growth velocities for Ni, Al and Cu obtained as results of simulation
and also the curves calculated according to Egs. (1) and (3) with prefactors that give the
best fit at the melting point. We calculated the difference of chemical potential of two
phases according to the equation Ap=AH (1— (T/Tp?)/2 which fits better such
dependencies [14] than the Spaepen equation. The full lines in Fig. 1 give the temperature
dependence of velocities calculated according to Eq. (1).

The dotted lines in Fig. 1 show the temperature dependence of velocities calculated
according to Eq. (3). Those and other lines go close to the experimental dots near the
melting point because the coefficients fi and f» are chosen from such condition. However,
the coefficients fi is too large in comparison with (1). Analyzing the temperature
dependences of growth velocities, we see that the Wilson-Frenkel theory with such great
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coefficients, fi~10, fits better the calculated data in wide temperature intervals. Thus, the
simulated data concerning the growth velocities in the large temperature intervals give
evidence of the thermo-activated growth.
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Fig. 1. The simulated growth velocities of single crystals and calculated data.
Full lines are calculated according to the Wilson-Frenkel theory; dotted lines are calculated according
to the Broughton, Gilmer and Jackson equation.

Conclusions

The Broughton, Gilmer and Jackson equation for the evaluation of growth velocities
is valid at the temperatures close to the melting points (not lower than 100-200 K from
them). The simulated data concerning the growth velocities in the large temperature
intervals give nevertheless an evidence of the thermo-activated growth. However, the
values of the kinetics coefficient are much larger that is predicted by the Wilson—Frenkel
theory for pure metals. For definitive conclusion about temperature periods, in which the
first or second theory works better, it is necessary to carry out a careful study of
diffusivity for these metals in the large temperature intervals and determine the
temperature dependences of the activation energy Q.
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QUANTITATIVE ANALYSIS OF NANOSTRUCTURES

The interest to surface disordered phases in modern nanoelectronics and recent
progress in the combination of visualization and simulation techniques are discussed.
The role of modeling and studying the properties of nanoclusters on Si surface is
emphasized. The applications of the Model Molecular Graphics Package to such
nanostructures are demonstrated, its interactivity possibilities are considered.
Mathematical background and computation results are presented for the Modified
IEHT-a method, POTENTIAL package, and Graphic Package. The last one gives the
3D representation of the investigation of nanoclusters, processes of their formation
through chemisorption and their final geometry. The results are important for
nanotechnology.

Keywords: nanoclusters, model, quantum-dimensional system, visualization.

OO0cyxkaalwTcsi MNPUHYMHBI HHTepeca K TMOBEPXHOCTHO PpPa3ynopsifi0YeHHBIM
COCTOSIHUSAM B COBPEeMEHHOIN HAHOJJeKTPOHHMKe M CYIIeCTBYWIIHIi mporpecc cpeam
MeTOJ0B BH3yaau3anuu H MoaedupoBaHus. Ocoboe BHHMaHHe YyjaeldsieTcsl pPoOJH
MOAETHPOBAHMS NMPH H3YYeHHHM CBOHCTB HAHOKJAaCTepPOB HAa MOBEPXHOCTH KPeMHHS.
IIponeMOHCTPUPOBAHO NPHMeHeHHe NMaKeTa MoJIeKyJsipHoi rpadpuku Model Molecular
Graphics Package k TakuM HAaHOCTPYKTypaM H PacCMOTPEHBbl €ro HHTEPaKTHBHBbIE
BO3MO:xkHOcTHU. IIpeacraBienbl MaTeMaTHYeCKOe 000CHOBAHUE U Pe3yJbTAThI PACUYEeTOB
B nporpammHubiXx nakerax Modified IEHT-a method, POTENTIAL package, u Graphic
Package. IMociaenHuii maker mo3BoJiseT B TPeXMEPHOM IpelCTaBJIeHHU NPOBOAMTH
HCCJIe0BAHUS HAHOKJACTEPOB, H3y4YaTh MNpouecchl HX 00pa3oBaHHMs B pe3yJbTaTe
XeMOoCcOpOUMH M NOJAYy4aTh OKOHYAaTelbHYI0 reomeTpuio. IlosyuyeHHBIe pe3yiabTaThl
NpeACTaBIASIOT HHTepecC AJA HAHOTEXHOJOTHIi.

KnwoueBble cao0Ba: HaHOKJIAacTepbl, MOJeIb, KBAaHTOBO-Pa3MEpHBIE CHUCTEMBI,
BU3yanHu3alus.

OOroBoprIOTHECS NPHYNHHU iHTEepecy A0 MOBEPXHEBO PO3YNMOPSAAKOBAHHX CTaHIB y
cyyacHiii HaHoeJeKTpoHimi Ta mnporpec Yy po3podui meroaiB Bisyaaizanii Ta
MoJenwBaHHA. OcobyiuBa yBara npuaijserbcs poJii MOJeJIOBAHHA NPH AOCHIAKEHHAX
BJIACTUBOCTEIH HaHOKJacTepiB Ha noBepxHi KpeMHilo. IIpogemoncTpoBaHo
3aCTOCYBaHHSA makeTy MoJjaekyasipuoi rpadiku Model Molecular Graphics Package no
TAKHX HAHOCTPYKTYpP Ta PO3rasiHyTi iioro inTepakTuBHi MoxauBocTi. IIpeacraBieno
MaTeMaTH4YHe OOIPYHTYBaHHSI Ta pe3yJbTaTH PO3PAXyHKiB y NpPOrpaMHHX NakKeTax
Modified IEHT-a method, POTENTIAL package ta Graphic Package. OcTanmnii
naKeT J03BOJII€ Yy TPUBHUMipHOMY mpeAcCTaBJeHHI TMNPOBOAUTH JOCHiIKeHHHA
HAaHOKJacTepiB, BHBYAaTH mNpouecHu iX yYTBOpPeHHA B pe3yabTaTi XxemocopoOuii Ta
OTPHMYBATH OCTaTO4YHY reoMerpiwo. OTpumMaHi pe3yJbTaTH € NiKaBUMH JJd
HAHOTEXHOJOTIii.

KniouoBi cioBa: HaHOKIacTepH, MOJENIb, KBAHTOBO-PO3MipHI CHCTEMH, Bi3yasizamis.
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Introduction

Semiconductor surface forms a specific surface disordered phase (SDP) and the
main peculiarities of modern nanoelectronic devices depend on the individual parameters
of the surface phase. Furthermore, the reactions of atomic hydrogen (H), fluorine (F),
chlorine (Cl) and bromine (Br) with Si surface are widely studied experimentally and
many investigators observe the semiconductor SDP directly [1-3]. For the quantitative
analysis of the creation of nanostructures like nanoclusters (NC) in Si and other solid
materials the cluster distribution along the surface is necessary.

On the other hand, the recent progress in the combination of visualization and simulation
techniques concurs in obtaining spectacular results in the investigation of chemical reaction
mechanisms as well [4]. The traditional quantum chemical ab initio methods, based on the
Hartree—Fock scheme became well-established in studies of the electronic and geometrical
structure of solid NC’s [1]. Therefore, the surface NC’s as real objects and models of
nanoelectronic materials for intellectual systems are of great interest.

Our Model Molecular Graphics Package (MMGP) is specially designed so as to
allow us the high-level computerized visualization in molecular science. MMGP contains
many interfaces with quantum chemical programs such as those of the semiempirical and
molecular surface geometry generation that is based on an interatomic potential (for
example, the modified Stillinger - Weber (MSW) potential).

In the paper the development and applications of the MMGP to the Si-NC structure
is demonstrated. The MMGP generates detailed and easily interpretable and aesthetically
attractive graphics representing models of molecular structures and related properties.
The package offers a high level of interactivity through the use of the mouse and via a
large set of menus and submenus organized in such a way that enables users to learn
rapidly the basic operations leading to efficient visualization (see Fig. 1, 2).

Fig 1. Map of the electron density distribution for Fig.2. 3D - representation of the nanocluster
the nanocluster. formation.

For all the menu items, a help facility is implemented. Various representation
options and attributes may be selected for adapting the visual output to personal needs
and preferences: the molecular structures may be represented as discrete dots, and the
global appearance may be modified via attributes such as background appearance,
perspective or orthogonal projection, and others. The purpose of the MMGP is the
interactive visual representation of three-dimensional (3D) models of molecular structures
and properties for research. Due to the flexibility of the data- and program-structure,
various chemical systems ranging from small compounds (clusters) to large
macromolecules may be investigated; additional interfaces and tools can easily be
implemented. The MMGP contains the tools that are necessary for the investigation and
visualization of the results generated by the calculations with such an available program-
package: Modified IEHT-a method, POTENTIAL package, Graphic Package.
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Modified IEHT-o method

This is for semiempirical calculations of one-electron level energies, wave functions,
and other parameters of electronic structure of NC. The estimation of the total energy of
clusters that have different sizes follows

Eope Z QA(FAB) o QA(FAB) +Z g,-Ei—(Eee+Eexc) ’ (1)

A=B ¥ 4B

all occ |

Eexe= 2 X —Vu3 S,%W ()
A#B, u#v ' AB
where vap is a fitting parameter.
POTENTIAL package

This is a simulation program for calculations based on different types of interaction
potentials. One of them is the modified Stillinger—Weber-type potential [2]. The
Hamiltonian is

N p?2 N N
=X b S vl X v F i) (3)
i=14M j<j i<j<k

where 71,77...7 y are coordinates of the atoms, V iy is the twin potential (4); V 3in 1s
the tree-particle SW-potential

A BL—I exp 4
i) =17 g rr—a )b Fi <2504 @)

0,others

Vi (fz'jfik)fjk):171’jk+17kij+17jki )
2
Hijk=/1(cos6jik+lj exp ik +7l]lC
3 rl'j—a rl‘k—a
where jSk is an angle, ;7,-]- and ij, fl-jz‘fi—fj‘ is a vector between i and j

atoms in units of the equilibrium distance between the nearest atoms in the
structure (7). For Si 7, = 2.351A (modified SW) and 7, =2.0951A (original

SW). The energy unit equals to E = 2.1675 eV, i.e. Es;.s; in the Si crystal. The
parameters of the modified SW- potential are presented in [3].
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Graphic Package

Graphic Package is a geometrical program based on 3D-representation of the
investigation of NC.

We report the results of test calculations for adsorption processes and optical
properties of the closely packed and ball-like Si NC. Real surface objects may be
constructed by introducing stereochemistry, i.e., the 3D atomic positions, and it is
important to visualize them as molecular models with the usual rendering techniques
leading to 3D perception. MMGP visualization allows investigators to emphasize at
length the different aspects of molecular structure of surface: chemical topology,
conformational details, etc.

We applied the MMGP to the Si-SDP. With the appearance of semiempirical
methods, the calculation of the equilibrium geometry and visualization of quite large
model became possible (N=125 Atoms). The calculated bond lengths of some surface are
given in Refs. [5-7].

As one can see from these data, the calculated interatomic distances are in a quite
good agreement with the experimental ones. Especially, the changes of the Si-Si bond
from a small Si-NC (2-10 atoms) to big ones are accurately described. We find the
energies of NC, binding energy per atom, and interaction energy of the systems «NC-
SDP»y are obtained for more stable geometry. Furthermore, the energetic positions and
equilibrium distances as well as of silicon are described rather well.

Another example of the adsorption process and chemical reactions on semiconductor
surfaces is the interaction with halogen atoms [6]. When using the model to represent the
SDP, a choice has to be made about the NC size, that is, the number of atoms that are
treated explicitly in the calculations, and the level of precision of the required
computation. Fortunately, the chemisorption of atoms on SDP seems to be of local
character. This fact is greatly supported by ab initio model calculations, and particularly
by the calculations for the chemisorption of F and Cl on Si-SDP.

In our calculation the single NC contains 10-100 Si atoms representing the first four
layers of the Si-SDP. We regard this model as hypothetical molecules (quasimolecules) and
do try to compare the computed results (for example, magic numbers) directly to
experimental data of the corresponding impurities in the solids or chemisorbed systems [1].
The mass spectra of charged NC’s, where magic numbers are observed, are given in [3].

Taking into account the internal structure of the ball-like Si NC’s we investigate
theoretically the adsorbtion and scattering of light by them. The theory for the interaction
of electromagnetic fields with local charge-carriers near boundary of the small spherical
semiconductor microcrystals was presented in [8]. In [5, 8] the dipole moments of NC
(using MMGP) and transition dipole moments for local bulk states and local exterior
surface states were calculated. It was shown that the dipole moments of the transitions for
local states of the Si NC are large compared to the typical values of transition dipole
moments for Si-NC.

Conclusions

It is shown that the calculated energy and geometrical characteristics obtained by
MMGP are in satisfactory agreement with the experiment and others ab initio calculations
[1-8]. The present calculations show that the MMGP can be used to obtain a detailed and
reasonably accurate description of various aspects of the small halogen — Si- NC. In view
of the interest of physicists to the visualization of such NC, one may foresee that the data
banks representing the major types of stable systems will soon be available. Therefore, it
is important for a physicist to have at hand the computer tools allowing visualization and
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generation of computational information. The combination of MMGP with molecular
dynamics in connection with the technique of simulated annealing makes it a very useful
tool for the determination of geometries of large NC. Reconstruction processes at Si SDP
or amorphous solids can be studied also in this way.
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RESONANCE PHENOMENA IN A WAVEGUIDE-DIELECTRIC STRUCTURE

The physical processes occurring in the waveguide-dielectric structure that has the form of a
section of rectangular cut-off waveguide with dielectric insertion filling completely the cross section of
the waveguide are considered. There are travelling modes in the insertion.

The electromagnetic fields in the classic waveguide-dielectric resonator without devices for its
excitation and with coupling elements are calculated. The expressions for the reflection and
transmission coefficients of the structure under consideration are presented. The calculating results of
the distribution of the modulus of the electric field along the longitudinal axis of the cut-off waveguide
at the natural frequency and frequencies near to that are obtained. It is shown that the frequency
deviation from the natural value greatly reduces the electric field inside the resonance volume. The
positions of poles and zeros of the reflection coefficient are investigated with a fractional-rational
approximation. The obtained results are useful for measuring the properties of dielectric materials
using waveguide methods.

Keywords: waveguide-dielectric structure, resonance, fractional-rational approximation.

PacecmatpuBaroTtest pu3nyecKkne Npouecchl, MMeIIIHe MeCTO B BOJHOBOAHO-IMIJIEKTPHYECKOil
CTPYKTYype B BHJAE OTpe3Ka MNPSAMOYT0JLHOI0 3anpeleIbHOr0 BOJHOBOAA C JHIJICKTPHYECKO
BCTaBKOii, IOJTHOCTHIO 3aNO/IHAIONIEl MoNepevyHoe ceyeHHe BOTHOBOAA. Bo BcTaBke cylecTBYIOT
pacnpocTpaHsIoImKecs: BOTHOBOIHbIE MObI.

AHaqu3upyeTcsi TMoOBeJdeHHe J1eKTPOMATHHTHOrO MO B  KJIACCHYECKOM BOJHOBOIHO-
AMIJIEKTPHYECKOM pe30HATope ©e3 y4eTa YCTpPOICTB /ISl ero BO30Y:KAeHHS, a TakKike HpH
HCNOJIb30BAHMM cHCcTeM cBA3H. IIpuBoAsiTCS BhIpaskeHus A pacyera K03(PpPUIHEHTOB 0TpasKeHUus U
NPOXOKACHUs uccaenryeMoii cTpykrypsl. IIpuBoasites pe3yabTaThl pacdera pacnpegeieHHs MOAYJIS
HANPSUKEHHOCTH 3JIEKTPHUYEeCKOro IoJisi BJ0Jb NPOJOJBLHOI OCH 3ampelebHOIO BOJHOBOAA Ha
PE30HAHCHOM 4YacToTe W HA 4acToTaxX, OIM3KHMX K Heil. JleMOHCTpUpYyeTCs, YTO OTKJIOHEHHE YACTOThI
3JIeKTPOMATHUTHOTO TMOJSl OT Pe30HAHCHOT0 3HAYEeHHsl NMPHBOAUT K 3HAYMTEIbHOMY CHHKEHHIO
HANPS’KEHHOCTH 3JIEKTPHYEeCKOro IoJsi BHYTPM pe30HaHCHOro o0néma. C mnoMombi0 ApoOHO-
PAUMOHAIBLHON aNNPOKCMMALMM MCCJelyeTcs pPAacHoJiokeHHe TMOJI0COB M  HyJeid (yHKUUH
ko3¢ punuenta orpaxkenusi. IlomydyeHHble pe3yJbTAThl SIBJSIOTCH MOJIE3HBIMH ISl TPOBedeHHs
HU3MepeHMii CBOICTB IHI/IeKTPHYECKHX MaTepHaI0B BOTHOBOJIHBIMH METOAAMH.

KiroueBble cj10Ba: BOJHOBOAHO-IAMAIEKTPUYECKAst CTPYKTYypa, DPE30HAHC, IPOOHO-palMOHAJIbHAS
annpoKCUMaLusl.

Posrasparorbes (isnyHi npouecu, ki Big0yBaoThcsl B XBUJIEBIIHO-AieIeKTPUYHIN CTPYKTYpi y
BH/i BiIpi3Ky 3aKpHTHYHOr0 MPSIMOKYTHOTO XBHJIEBOJY 3 /i€ IeKTPHYHOI0 BCTABKOIO, SIKA MOBHICTIO
3al0BHIOE NONIepeYHHUii epepi3 XBHIIeBOAY. Y BCTABLi iCHYIOTh XBHJIEBOJAHI MOIH, 1110 NOIINPIOIOThHCS.

AHani3y€eTbesl NOBeiHKA eJIeKTPOMATHITHOrO MOJISl Y KJIACHYHOMY XBHJIEBiHO-ieJeKTPUYHOMY
pe3oHaTopi 6e3 BpaxyBaHHSl MPHUCTPOIB 1Jisl HOro 30y/I:KeHHS, 2 TAKOK NPH BHKOPHUCTAHHI CHCTeM
3B’s13Ky. HaBoasiTbest BUpa3u 171 po3paxyHKy koedilieHTiB BitOMTTS Ta MPOXOIKeHHS AOCTiIKYBaHOI
cTpykTypu. HaBoasiThesi pe3yJbTaTH PO3PAXYHKY PO3HOALTY MOAYJISl HAMPY:KEHOCTi €JeKTPHIHOIO
NOJISA B3J0B3K NMOB30B:KHbOI OCi 3AKPHUTHYHOI0 XBHJICBOAY HA PE30HAHCHIN 4acTOTi Ta HA 4YacToTax,
O0JIM3BKHX /0 Takoi. /leMOHCTpyeThes, IO BiAXWJIEHHSI YaCTOTH €JIeKTPOMATHITHOIO NO0JIS Bin
Pe30HAHCHOTO 3HAYEHHS] BUKJINKAE 3HAYHE 3HUKEHHSI HANPY:KEHOCTi eJIEKTPUYHOTO TOJISI BcepeanHi
Pe30HaHCHOro 00’emy. 3a [10mMOMOrow Jpo0oBO-palioHAILHOI anmpokcuMauii  AOCTiIKy€EThCS
po3TallyBaHHsl MoOJaIOCiB Ta HYyJiB ¢yHkuii koediumieHty BinourTa. OTpuMaHi pe3yJbTaTH €
KOPMCHUMH /I TPOBeJdeHHs BHUMIipiB BJIacTHBOCTell [ieJleKTPHMYHMX MaTepiajiB XBHJIEBOAHUMH
MeTOolaMH.

KnrodoBi cioBa: jiesleKTpUYHO-XBHJIEBOJHA  CTPYKTypa, pe30HaHC, ApoOOBO-pallioHaNbHA
ampOKCUMAIIis.

© L. V. Grymalyuk, O. O. Drobakhin, 2013
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Introduction

In the present time, modern technologies and productions require the use of
dielectric materials. It is necessary to obtain information about the properties of the
dielectric material, such as its dielectric permittivity and its loss tangent. Various
microwave methods are used to solve this problem. Among them an important place is
occupied by devices using waveguide-dielectric structures.

Many papers [1-4] are devoted to the consideration of the devices on the basis of
waveguide segments with dielectric inserts. According to the authors, the first attempt to
produce a classification of the waveguide-dielectric systems was presented in [5]; there
the basic physical ideas were realized. However, according our opinion, such analysis has
only the proposition nature and, for example, the physical processes in a rectangular
waveguide with a dielectric insert have not been completely analyzed.

The purpose of this paper is considering the resonance phenomena in such systems.
The rectangular waveguide with a dielectric box completely filling the cross-section of
the waveguide has been taken as an example. The choice of the proposed structure is
determined by the fact that it has an analytic solution of the electromagnetic problem; the
results of the analysis can be generalized for more complicated cases.

Main part
Let us consider the classic pattern of the waveguide-dielectric resonator excluding
devices for its excitation. It is presented in the Fig. 1.

(@) (b)

Fig.1. A waveguide-dielectric resonator model without its excitation device (a) and the variation of the
cut-off waveguide excitation with dielectric filling inserts(b)

As known, the electromagnetic field components E,, H, and H. of the main type of
the mode Hjy in a rectangular waveguide are not zeroes. If the origin of the longitudinal
coordinate is situated in the middle of the dielectric insert, there are two cases in view of
the axis of symmetry of the system under consideration: the first one is the situation when
the magnetic wall is in the middle of the dielectric parallelepiped; and the second one —
when the electric wall is in the middle of the dielectric parallelepiped. In the first case the
electric field in the dielectric insert can be described by the expression

E, = Acos(jz) (1)

and the other case is

E, = Asin(yz). ()
The electric field outside the dielectric in both cases is described by the expression

EY) = dyexp(-ypz) 3)
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2\ 7\ Y ()
where A4, 4, are amplitude coefficients, y = (TJ a—[—j , Vo = (7} —(—j are
a a

propagation constants in a waveguide filled with a dielectric and in an empty one
respectively, a is the size of the wide side of the waveguide, A is the length of the
electromagnetic wave in the waveguide, ¢ is dielectric permittivity.

The required tangential component H, of the magnetic field is:

Y

H, =-4 sin(y-z) in the first case and H, =4 cos(y-z) in the second.

Outside the dielectric it is H )(C) =-4 y—oexp(— }/02) , where @ — cycle frequency, y is the

JOU
permeability of the medium. The boundary conditions for the tangential components E), H, of

the electromagnetic field can be satisfied only in the plane z = é due to the symmetry of the

system with the origin of z-coordinate in the center of dielectric slab, where L is the thickness
of the dielectric insert. In the first case, the boundary conditions for E, and H, are

A cos(y%j =4, exp(— Yo %) and Ay sin[y%j =AyYo exp(— Yo %j , respectively.

The condition for determining the natural frequencies is obtained via dividing the
first expression by the second one

ctg(7§)=7l. @)
0

The similar expression for the second case is

rg(y%) - —ylo. )

Such approach of similar ideology was used by the authors of papers [6] with
certain complications in satisfying the boundary conditions at the ends of waveguide
systems with a dielectric filling.

A necessary condition for the initiation of resonance properties, as it is known, is the
abrupt intensity changing of the electromagnetic field in a resonant volume with
respective frequency changing. It should be noted that there are two radically different
physical natures of the manifestation of resonant properties for the considered model. In
the first case the resonance system is formed by a segment of a standard waveguide with
traveling mode in the corresponding frequency band. In the other case, the waveguide
segment is cut-off one without any traveling mode but a traveling mode exists in the
dielectric insert. For the first case the equations for determining the natural frequencies
have complex solutions, so natural frequencies also must be complex. This corresponds to
the loss due to the electromagnetic energy radiation. It is a radical difference from the
other case, in which the presence of the cut-off waveguide eliminates the radiation loss.

In our paper we consider the case with the cut-off waveguide as the simplest version
for calculations. The size of the wide side of the waveguide ¢ = 12 mm provides a
dominant mode in the 3-cm wave-range. Let us suppose that hypothetical dielectric
material has the dielectric permittivity € = 80 and thickness L = 10 mm, under conditions
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of absence dielectric losses ( tgd = 0 ). In the case of the solution with magnetic wall (4),
the chosen geometrical and electrical parameters of the system give the value of natural
frequency f = 10242 MHz. At this frequency the distribution of the electric field

strength modulus along the longitudinal axis from the point of symmetry in the dielectric
insert and in the part of space outside is shown in Fig. 2a. The influence of the frequency
changes on the distribution of the electric field strength modulus is illustrated in Fig. 2b.

1,0 1,0
0,8 \ 0,8 \
N\ \\
E.| 0,6
‘ y‘ \\ |Ey‘ 0,6 ‘\
04 AN 04 N\
N \\
0.2 N 0.2 NS
0.0 0,0
0 5 10 15 20
50 0 5ol s 20
(a) (b)

Fig. 2. The electric field strength modulus along the longitudinal axis of the cut-off waveguide at
resonance frequency fr =10242 MHz (a) and near it / = 9600 MHz (b) for parameters of dielectric

insert: ¢ =12mm, L/2 =5 mm, £= 80

The view of the field with L/2 = 5 mm is considered in this figure due to the

system symmetry. As we can see from Fig. 2b, the frequency deviation of the
electromagnetic field from the natural one leads to a slight decrease of the strength only
in the plane of the dielectric permittivity jump. Hence, it is clear that such simplified
model of the waveguide-dielectric resonator can not give a full description of the
physical processes occurring in this structure.

Obviously, for more complete description of processes in such structure it is
necessary to take into account the devices for excitation of the cut-off waveguide
inserts connected to the dielectric sample. There are several versions of the devices for
excitation of cut-off waveguides. For example, in [8] a sharp change of sizes of the
cross section in H-plane is used; according to [9] multilayer dielectric filling of the cut-
off waveguide can be used; using coaxial transition is presented in [6]. For the
succeeding analysis we shall use the model that has been shown in Fig. 1b, as the
simplest one for the electromagnetic calculation.

Using the boundary conditions for the E,, H, components of the electromagnetic
field in the planes of dielectric permittivity jumps, we can obtain the expressions for the

—yod d —yL L
. 1+R e 7% + e’ e e’ (
complex transmission 7 = . ! . 2 (e rod r3e70d ).end and
1+ 7 1+n 1474
- -1 - ~ 1+ -1 _
reflection R =4~ coefficients for this structure, where ¢ _nlrth , 7 =47 ,~2r0d ,
q+1 7o 1-1 g+1
1+ -1 _ 1+ -1 _ )
q1=7_0. rz, ’”2:(12 e 27L, 2:L' r3a r3=q3 e 2;/()61', C]3=}/—O,andd 18
y 1-n gz +1 7o 1-13 q3 +1 7

the length of the unfilled part of the waveguide, L is the length of the central dielectric
insert. The longitudinal distribution of the electric field strength along the cut-off
waveguide with three dielectric parallelepipeds has been calculated.
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Fig. 3 shows the corresponding results. Geometrical and electrical parameters are
the size of the wide side of the waveguide a = 12 mm, the length of the external
dielectric parallelepipeds L, = 20 mm and permittivity & =10, the length of the

unfilled part of the waveguide d = 10 mm, the length of the central parallelepiped L=
10 mm and its dielectric permittivity &= 80. The estimated resonance frequency is
10250 MHz for this configuration. The distribution for the resonance frequency is
presented in Fig. 3a.

Fig. 3b shows a longitudinal distribution of the electric field strength for the same
system, but the frequency of the electromagnetic field is 10000 MHz. The comparison
of Fig. 3a and Fig. 3b shows that, as it follows from the theory of resonance
phenomena, the deviation of the electromagnetic field frequency from the resonance
value induces sharp reduction of the electric field strength inside the resonant volume in
contrast to the results which have been obtained for the simple model.

10, |
2,0

8
) 15 \
By, Iy 10 \
5 05 \
0 00 m\‘
10 0 10 20 30 40 50 60 70 80 10 0 10 20 30 40 50 60 70 80
z, mm Z, mm
(@) (b)

Fig. 3. The electric field strength modulus along the longitudinal axis of the cut-off waveguide
structure that has been shown in Fig. 1b at resonance frequency /= 10250 MHz (a) and near it

f =10000 MHz (b) with structure parameters: ¢ =12 mm, d =10 mm, L =10 mm, & =10, ¢ =80

Some difference in frequencies for the first and the second models can be
explained by the fact of coupling device effect on the resonance phenomena in the
second model. The following example will show this effect. Let us consider the case
where the dielectric insertion is a film of the thickness of 0.1 mm and all the other
parameters remain unchanged. The results of calculation of the longitudinal distribution
of the electric field strength for the length of the unfilled part of the waveguide d =10
mm has been shown in Fig. 4a and corresponding ones for d =25 mm are presented in
Fig. 4b. Length d =10 mm corresponds to the resonant frequency of 9943 MHz and
d =25 mm corresponds to 9752 MHz; it can be explained by changing the influence of
the coupling constant of the exciting element on the resonance volume. For d =25 mm
the electric field strength increases by about an order of magnitude and oscillations of
the electric field strength appear in the area of the first dielectric parallelepiped.

Moreover, the range between the minimum and maximum values of electric field
strength has increased in tens times in comparison with the case of L = 10 mm. In the
case of d =10 mm, L=10 mm the frequency deviation of the electromagnetic field
from the resonance value leads to a sharp decrease of the electric field strength (Fig. 5).

For a comparison, the natural frequency for the first model (with the same
geometrical sizes and electrical parameters of the central dielectric parallelepiped)
determined from the equation (4) is 9750 MHz. It practically coincides with the
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frequency (9752 MHz) for the second model with d = 25 mm. Thus, their natural
frequencies determined from the simplest equation (4) coincide with the natural
frequencies of the second model with sequential decreasing of coupling coefficients.
The values of the poles and zeros have been obtained by fractional-rational
approximation [10] of the structure reflection coefficients as functions of frequency. It is
well known that the positions of the poles coincide with resonance frequencies. The fact of
convergence of the values of the poles and the calculated resonance frequencies confirms
that the considered dielectric waveguide structure really manifests resonance phenomena.

104 l

100
[
8 A %0 I
) N I
[\ 60 [
E,| By
4 40
I\ / \
5 20 / \
0 v
0 0 10 20 30 40 50 60 0 20 40 60 80 160
Z, mm Z. mm
() W)

Fig. 4. The distribution of the electric field strength modulus along the longitudinal axis of the cut-off
waveguide structure ( ¢ =12mm, d =10 mm, L =0.1 mm, & =10, &£ =80) has been shown in

Fig. 1b with various d : d =10 mm, f;=9943 MHz (a), d =25 mm, fr=9752 MHz (b)
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Fig. 5. The electric field strength modulus along the longitudinal axis of the cut-off waveguide structure
(a =12mm, d =25mm, L=0,1 mm, & =10, & =80) at frequency / =9600 MHz

Conclusions

As was shown, not every dielectric waveguide system, which has a resonance-like
frequency dependence of the reflection or transmission coefficients, is actually a
resonator system. The results have shown that the waveguide-dielectric system with a
coupling element, which was presented by the completely filled dielectric parts of the cut-
off waveguide, was the resonator. It was evidenced by the sharp reduction of the electric
field strength modulus at the deviation of frequency from the natural one. The obtained
results are useful for express measurements of dielectric material parameters with
waveguide methods.
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