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ON HYDRODYNAMICS OF BROWNIAN PARTICLE SYSTEM 

WITH ACCOUNT FOR RELAXATION PROCESSES 

Generalized hydrodynamics for a system of Brownian particles in an equilibrium liquid is 

constructed with taking into account non-hydrodynamic relaxation of its mass velocity to zero and 

temperature to the liquid temperature. The investigation is based on the Fokker–Planck kinetic 

equation. The standard assumption, that states of the system are weakly spatially non-uniform and, 

therefore, gradients of the hydrodynamic variables are small (small parameter g ), is used. The 

Bogolyubov idea of the functional hypothesis is taken as a basis for the hydrodynamics construction. It 

is established that one-particle distribution function of the main order in parameter g  is given by the 

Maxwell distribution with parameters depending on coordinates and time. This means that the local 

equilibrium is present in the system. Equations for functions that determine the distribution function of 

the first order in the gradients are obtained. On this basis kinetic coefficients of the system (heat 

conductivity, viscosity and others) are introduced, their anisotropy is connected with the mass velocity 

of the Brownian particles. Solutions of the equations are considered at the end of the relaxation 

processes, thus a new small parameter µ  is introduced in the theory. The main approximation in this 

parameter is analyzed and in this approximation the kinetic coefficients are calculated. To this end a 

spectral theory for the Fokker–Planck operator, that defines collision integral of the system, is 

elaborated for the three-dimensional case. Eigenfunctions of this operator are expressed through the 

tensor Hermite polynomials. The proposed approach can be generalized for the higher approximations 

in the small parameter µ  that allows discussing the physical meaning of the parameter µ . The paper 

generalizes the standard hydrodynamics of the Brownian motion, which assumes that the relaxation 

processes are over and the system is described only by the diffusion equation. 

Keywords: Brownian motion, non-hydrodynamic relaxation processes, generalized hydrodynamics, 

Hermite tensor polynomials, kinetic coefficients. 

1. Introduction 

Investigation of hydrodynamic phenomena in the presence of non-hydrodynamic 

relaxation processes is an important problem of the modern theory of nonequilibrium 

processes [1]. Such processes can be observed in spatially uniform states of a system. The 

problem of their consideration consists in the absence of a small parameter that makes 

investigation on the basis of the Liouville or kinetic equations impossible. In the study of 

the spatially non-uniform systems gradients of parameters that describe a nonequilibrium 

state are considered to be small (small parameter g ). This is primarily about the 

distribution function of the system of the main order in the gradients, which is a 

nonequilibrium one. An assumption about its equilibrium with parametric dependence on 

coordinates x  and time t  considered as a basis for constructing a theory of spatially non-

uniform states is called the local equilibrium assumption [2]. These problems are 

discussed in our investigation of the plasma hydrodynamics [3, 4] on the basis of the 

Landau kinetic equation. It was proposed to consider the relaxation processes at their end, 

thus introducing a new small parameter in the theory (we denote it by µ ). Even in this 

approach the problem of an approximate solution of Fredholm integral equations of the 

second kind remains (in particular, the spectral problem for operator of the linearized 

collision integral). It is done in [3] with the method of a truncated expansion in the 

Sonine polynomials. However, the convergence of this procedure needs a further 

investigation. We suppose that  an investigation of  the mentioned problems in Brownian 
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motion theory will help to better understanding of the situation. In further we propose to 

build a perturbation theory in parameter µ  on the level of integral equations for functions 

determining the distribution function of Brownian particles in the first approximation in 

the gradients. It promises to simplify greatly the theory which was highly complicated in 

the calculation of contributions to the distribution function of the order 1 1
g µ  in the 

mentioned papers. In this paper a rarefied gas of Brownian particles (B-particles) 

immersed in equilibrium liquid is investigated. This corresponds to the standard statement 

of the problem when interaction between Brownian particles is not taken into account.  

The paper is organized as it follows. In Section 2 the basic equation of the theory is 

discussed. In Section 3 a perturbation theory in small parameters g  and µ  is built and 

hydrodynamic equations are derived. 

2. Basic equation of the theory 

Hydrodynamic states of rarefied system of B-particles immersed in equilibrium 

liquid are investigated on the basis of the Fokker–Planck equation 
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where γ  is a positive constant, m  is B-particle mass, 
0T  is temperature of the liquid (see 

derivation of this equation, for example, in paper [5]). Energy density ( , )x tε , momentum 

density ( , )l x tπ  and mass density ( , )x tσ  are defined by formulas  
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where flux densities of energy 
nq  and momentum 

lnt  are introduced as functionals of the 

distribution function by the formulas 
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= ε∫ ,       3( , ) f ( , )n
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t x t d pp x t
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The mass velocity of the B-particle system ( , )l x tυ  as a hydrodynamic variable is 

defined by the formula 

( , ) ( , ) ( , )l lx t x t x tπ = σ υ  (6) 

(see, for example, [6]). In hydrodynamics besides the laboratory reference system (LRS) 

the accompanying reference system (ARS) is widely used. Transition from LRS to ARS 

is performed by the formulas 
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 0 2 / 2ε = ε + συ ,   0 0 0 2( / 2)n n nl lq q t= + υ + ε + συ ,     0

ln ln l nt t= + συ υ  (7) 

where density of energy, flux densities of energy and momentum in the ARS are given by 

expressions 
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These expressions include the distribution function in the ARS 0f ( , )p x t  

0

( , )f ( , ) f ( , )p p m x tx t x t+ υ≡  (9) 

(a quantity A  in the ARS is denoted by 0A ).  
The temperature of the B-particle system is defined by the formula of the ideal gas 

theory 
0 3 / 2T mε = σ  (10) 

because the system is rarefied one (see, for example, [6]). Hydrodynamic equations with 

use of the formulas (4), (6), (7), and (10) take the form 
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These equations show that relaxation processes of the velocity attenuation and the 
temperature equalization are present in the system. In spatially uniform states the 

relaxation is described by the formulas 

( ) (0)
t

l lt e
−λυ = υ ,          2

0 0( ) [ (0) ]
t

T t T T T e
− λ= + − . (12) 

In order to obtain the hydrodynamic equations, the right sides of the equations (4) 

have to be expressed through the hydrodynamic variables ( , )x tµξ  

0 ( , ) ( , )x t T x tξ ≡ ,    ( , ) ( , )l lx t x tξ ≡ υ ,     
4 ( , ) ( , )x t x tξ ≡ σ . (13) 

This can be achieved by searching the distribution function f ( , )p x t  in the form of a 

functional f ( , )p x ξ  of variables ( )xµξ . The fact that the distribution function f ( , )p x t  

takes this form in the natural evolution (see [6]) is called the functional hypothesis which 

is written in the form 

0

f ( , ) f ( , ( ))p pt
x t x t

τ
→ ξ
≫

. (14) 

The formula contains a characteristic time 
0τ  and has to satisfy the condition 1

0

−τ λ≪  

because in our consideration the relaxation is continued (see (12)). 

In these terms the hydrodynamic equations (11) take the form at 
0t τ≫  

( , )
( , ( ),f ( ( ))

x t
L x t t

t

µ

µ

∂ξ
= ξ ξ

∂
. (15) 

According to the kinetic equation (1), the functional f ( , )p x ξ  satisfies the equation 



A. I. Sokolovsky, Z. Yu. Chelbaevsky, S. A. Yanenko 

 25

3
f ( , ) f ( , )

( , , f ( )) (f ( , ))
( )

p pl
p

l

x xp
d x L x I x

x m x
µ

µ µ

δ ξ ∂ ξ
′ ′ ξ ξ = − + ξ

′δξ ∂
∑∫ . (16) 

One has to add conditions that define the parameters ( )xµξ  and are a consequence of the 

definitions (3), (6), and (10) to this equation 

3
f ( , ) ( )pd pm x xξ = σ∫ ,        3

f ( , ) ( ) ( )l p ld pp x x xξ = σ υ∫ ,    

3 23 1
f ( , ) ( ) ( ) ( ) ( )
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(17) 

Equation (16) is a rather complicated nonlinear integro-differential equation and can 

be solved only in a perturbation theory. However, one has to note that kinetic equation (1) 

is exactly solvable one and it would be interesting to obtain the functional f ( , )p x ξ  by 

another way (see discussion of the B-particle system hydrodynamic evolution after the 

ending of the relaxation in [6]). 

3. Hydrodynamic equations for B-particle system 

Solutions of equation (16) for the distribution function f ( , )p x ξ , fluxes 0

nq , 0

lnt , and 

right sides ( , ,f ( ))L xµ ξ ξ  of the hydrodynamic equations (11) are sought together in the 

perturbation theory in the gradients of the hydrodynamic variables 

(0) (1) 2f ( , ) f f ( )p p px O gξ = + + ,      (0) (1) (2) 3( , , f ( )) ( )L x L L L O gµ µ µ µξ ξ = + + + , (18) 

with using the estimate 
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Here fpl  is a free path length of the B-particles, L  is a characteristic length at which 

parameters ( )xµξ  are substantially changed ( ( )sA  hereafter denotes contribution of the 

order s
g  to a quantity A ). 

It is easy to see that equation (16) with additional conditions (17) in the main in the 

gradients approximation has the exact solution coinciding with the Maxwell distribution 
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is true. The obtained result (20) means that in B-particle hydrodynamics the local 
equilibrium is present. Note, we do not know references to this result in the literature. 

On the basis of the formulas (8), (11), and (20) the following expressions for the 

fluxes in the ARS and for the right sides of the hydrodynamic equations 
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are obtained ( p  is pressure of the B-particles). 
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Taking into account the rotational invariance, the solution of the equation (16) in the 

first order in gradients can be written in the form 

(1)f ( ) ( )o n
p p l nl
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= + 
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where ( )lA p , ( )lnB p , ( )lC p  are some functions of the corresponding tensor 

dimensionality. Equation (16) gives the following equations for them 
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Additional conditions (17) take the form 
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(25) 

with account for the notation 
3 0

p p p
h d pw h〈 〉 = ∫  (26) 

( ph  is some function). Distribution function (23) with expressions (8) and (11) gives the 

following expressions for the energy and momentum fluxes in the ARS and the right 

sides of the hydrodynamic equations 
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(27) 

Here the coefficients of the heat conductivity
nmκ , viscosity 

nlmsη  and additional kinetic 

coefficients
nsmα , 

nlmsβ  

( ) /nm p n mp A p mκ = 〈ε 〉 ,       /nms p n msp B mα = 〈ε 〉 , 

( ) /nlm n l mp p A p mβ = 〈 〉 ,         ( ) /nlsm n l smp p B p mη = 〈 〉  

 

 

(28) 

are introduced. They are tensors because solutions of the equations (24) depend on the 

mass velocity 
nυ  in the LRS. Equations (24) are rather complicated and, therefore, we 

limit ourselves to the investigation of hydrodynamics at the end of relaxation processes. 

At this stage a new small parameter µ is introduced by the estimates 

~lυ µ ,        
0 ~T T µ−           ( 1µ ≪ ). (29) 

Functions ( )lA p , ( )nlB p  are sought in the form of expansions in the powers of µ  

[0] [1] 2( ) ( )l l lA p A A O= + + µ ,     [0] [1] 2( ) ( )nl nl nlB p B B O= + + µ .      (30) 

( [ ]sA  denotes a contribution of the order sµ  to a quantity A ). 



A. I. Sokolovsky, Z. Yu. Chelbaevsky, S. A. Yanenko 

 27

Further we will need spectral properties of the Fokker–Planck operator which 

defines the collision integral of the integral equation (1). Its right side eigenfunctions 

1... ( )
sn n pϕ  are expressed through tensor Hermite polynomials

1... ( )
sn nH x  

1 1... ...( ) ( )
s sn n n np s pϕ λϕ= −L ,     ( )

1 1

0

... ...( )
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and satisfy the completeness condition of the form 
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In the one-dimensional case the Fokker–Planck operator spectrum is investigated in book 

[7]. The tensor Hermite polynomials were introduced in the paper by Grad [8] and can be 

defined by the formula 
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Their orthogonality condition has the form 
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where the sum over all permutations of the subscripts 1,..., s  is taken. The first Hermite 

tensor polynomials are given by the formulas 
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An arbitrary momentum function ( )u p  can be expanded over the eigenfunctions of the 

Fokker–Planck operator by expressions 
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According to (24) and (35), in the main approximation of the perturbation theory in 

the small parameter µ  it is necessary to solve the following equations 
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Taking into account (31), from here we obtain the functions [0]( )lA p , [0]( )lnB p  
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satisfying the additional conditions (25). Now on the basis of (28) in the main 

approximation in µ  we get expressions for kinetic coefficients of the B-particle system 
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On hydrodynamics of Brownian particle system with account for relaxation processes 

28 

 

[0] 2
( )

3
lnsm ls nm lm ns ln sm= + −η η δ δ δ δ δ δ ,      

2
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2

Tσ
η

γ
≡ ;       0nlmβ = . 

(39) 

Note that one can calculate the kinetic coefficients in the next approximations in the small 

parameter µ  in the same way. It is also interesting to investigate modes of the obtained 

hydrodynamic equations. Both problems will be considered in a next paper. 

4. Conclusions 

Hydrodynamic equations for rarefied system (gas) of the Brownian particles immersed in 

equilibrium liquid were constructed with account for non-hydrodynamic processes of the 

mass velocity nυ  and temperature T  relaxation. Analogously to our papers [3, 4], the 

relaxation was investigated near its ending and kinetic coefficients were calculated in the 

main approximation in the corresponding small parameter µ . However, a fruitful idea to 

build a perturbation theory in powers of µ  not for the B-particle distribution function but 

for the functions ( )lA p  and ( )nlB p  that determine the contribution to f p  of the first order 

in gradients (1)
f p

 was proposed. This confirms our research experience in the investigation 

of plasma in papers [3, 4]. Therefore, it is planned to return to the problem discussed in 

[3] taking into account the mentioned. The statement that the Maxwell distribution with 

the velocity nυ  and temperature T  gives an exact expression for the distribution function 

f p  in the main in gradients approximation is our important result. This shows the 

possibility of local equilibrium states in the B-particle system as a result of its natural 

evolution. References for this simple (in our approach) result were not found in the 

literature by us. In our opinion, it would be important to continue the present paper 

investigation with using the method elaborated in [9]. 
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