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APPROXIMATE MODELS OF THE INVERSE PROBLEM FOR  

DETECTOR CHARACTERISTIC  

Characteristics of semiconductor diodes as power indicators are studied. The rigorous 

electromagnetic model of the direct problem of average detection current is derived using Shockley 

ideal diode equation for I-V characteristic with taking into account the influence of a load and a source 

resistance. This model is used for testing the variety of approaches to the solution of inverse problem of 

recovering the input power through output voltage. Some of approximate models of the inverse 

problem for detector characteristic such as Hoer-Roe-Allred’s, Potter-Bullock’s, Zhaowu-Binchun’s, 

and polynomial model are under consideration. Approximate models of the inverse problem for 

detector characteristic based on “polynomial” with non-integer power and rational-fractional 

representation are proposed. The application of continuous fractions for the numerical implementation 

of the last approach demonstrates its advantages. Maximum errors of approximation for different 

orders of approximating models and source resistance are calculated. The comparison the new 

approaches and application of neural networks based on radial functions is carried out. 

Keywords: power measurements, nonlinearity correction, rational-fractional approximation, non-

integer power, neural networks. 

1. Introduction 

Semiconductor diodes are widely used in various electronic measuring setups [1-6] 

as detectors of radiofrequency (RF) and microwave signals. The current-voltage 

characteristic of a semiconductor diode is well-known [7, 8] and this characteristic 

provides the solution of the direct problem. But for implementation of majority of 

measuring schemes the dependence of the power versus voltage depending on diode 

current is need to be used. This problem can be interpreted as the inverse one.  

Semiconductor diodes have substantial advantages over thermistors due to lower 

requirement to signal power level and faster operation [1]. But unrepeatability of the 

input impedance and deviation of output voltage of detector versus the measuring power 

from ideal linearity are their disadvantages. 

For improvement of the measurement accuracy, a correction of this 

nonlinearity should be made [2, 9-11]. A flexible method of approximation gives 

the use of radial basis functions. An artificial neural network, operating with this 

basis, can effectively approximate functions with arbitrary behavior [12], so there 

is reason to use this approach. For a comparison of approaches to the solution of 

the diode inverse problem, in the present paper the algorithm of the rigorous 

computer simulation of the direct problem of average detection will be proposed. 

It will be applied to investigation of the maximum errors of proposed models 

(polynomial, fractional, neural networks on base of radial functions etc.) of the 

detector inverse problem. 

2. Known approximate inverse models of detector characteristics 

The simplest procedure of the correction is based on assumption that detector 

works in the square-law region for low power levels and in linear region for high levels of 

the RF input power. This fact leads to the following expression of the solution of the 

detector inverse problem [3]: 
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2
21 UcUcP += , (1) 

where unknown parameters c1 and c2 should be estimated from the procedure of the 

calibration. 

Many experimental and theoretical investigations [7, 8], shows that model with two 

regions does not give a correct presentation of the detector characteristics especially when 

the temperature is low and the bias current is small. In the last situations exponential 

region [7, 8] appears for intermediate level of RF power. But even for normal 

temperatures and bias currents the accuracy of the simplest model (1) is not satisfactory 

for a precision measurement even in the two-region situation. 

There are many papers devoted procedures of the calibration of detectors and 

correction their nonlinearity for their use in six-port reflectometers [4-6, 13]. They have 

used approximate models of higher orders for decreasing errors of the inverse solution 

beside square-low region. The most popular model is Hoer-Roe-Allred’s one [1, 4, 5]. It 

is proposed in [9] and has form 

( )UfUcP 0= , (2) 

( ) n
nUcUcUf +++= ...1 1 . (3) 

Potter-Bullock’s model [10] is also widely used [6, 13] and described by expression 
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Sometimes Zhaowu-Binchun’s model [11] is considered 
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The use of polynomial model for six-port reflectometers [2] should be also 

mentioned 
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All these models supply correct behavior for small value of input RF power and 

some improvement in the beginning of the transition region. But in the region of linear 

detection high-order models cannot be useful. In the region of exponential detection, the 
inverse solution must be close to logarithmic behavior which should not be described by 

exponential function against polynomials of higher order. 

3. Solution of direct problem and comparison of maximum errors for different 

approximate models  

In [7, 8] some numerical and analytical approximate models of the direct problem 

have been proposed. They have good agreement with experimental data for some 

particular cases. But their errors cannot be controlled. 
In present work for obtaining numerical solution of the direct problem we proposed 

a computer simulation of a detection process in the static assumption. The simulation is 

based on Shockley ideal diode equation for I-V characteristic [7]  

( )[ ]1exp −= TDTD UUII , (9) 
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where ID and UD are the current and the voltage across the diode, IT is the saturation 

current, UT is the effective thermal voltage (UT ≈ 25 mV for the room temperature [8]). 

For average detection source current Im for given source voltage Um can be found from 

equation: 

( )[ ]{ }1exp −−= TmmTm URIUII , (10) 

where R is total resistance of the source, the load and linear part of diode. 

For some particular cases simple expressions for initial value Iiv of Im can be written. 

For small value of resistance R we have 

( )[ ]1exp −= TmTiv UUII . (11) 

For small value of source voltage Um we have 

( )dmiv RRUI += , (12) 

where TTd IUR =  is the differential resistance of the ideal diode. 

For a large forward value of source voltage Um we have 

RUI miv = . (13) 

For large reverse value of source voltage Um we have 

Tiv II = . (14) 

By some intellectual efforts higher-order analytical approximations of solution of 

(10) can be obtained. Numerical solutions of (10) have been found by the Newton 

method. For meander-shaped signals we need the solution of (10) only for two values of 

source voltage Um. For sinusoidal signals we have used 120 values of Um on the period of 

the oscillation. The average value of RIU mm −  is used as output voltage U of average 

detector. The results of computer simulation of solution of direct problem are shown in 

Fig. 1.  

        a                                                                                  b 

Fig. 1. Output voltage versus relative resistance of source for different input RF power (a) and versus 

input RF power for different relative resistance of source (b).  
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4. Numerical simulation of new approximate inverse models of detector 

characteristics 

An approximation of high order with correct asymptotic behavior for small and large 

levels of input microwave power can be achieved by application of “polynomial” with 

non-integer power. For example, we have used following formula: 

∑
=

+

=
M

m

M

m

mUcP
0

1

. (7) 

It is clear, that the non-integer powers of elements in “polynomial” have values in the 

range from 1 to 2 equidistantly. The step of the power increasing is equal to Mm  and 

depends on the order M of the model. One of the most powerful mean for a solution of the 

approximation problem is the ratios of polynomials or fractional-rational expressions [14]:  
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This model has 12 +M degrees of freedom instead of M  degrees of freedom for the 

previous models. The fractional-rational approximation using the interpolation by 

continued fraction provides rather stable results [14] thus this computational scheme has 

been applied. An artificial neural network, operating with basis of radial basis functions, 

has been used for the solution of the inverse problem. 

Verification of the applicability of known and proposed approximate models of the 

inverse problem (determination of the incident microwave power from the voltage at the 

output of the detector) can be performed using the experimental data or results of 

computer simulation of rigorous direct models. Maximum relative errors versus relative 

resistance of source r for different orders of approximation M are presented in Fig. 2-3.  
 

        a                                                                                  b 

Fig. 2. Maximum relative error versus relative resistance of source for different order M of 

approximating polynomial (a) and polynomial with non-integer power (b).  
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                                              a                                                                                          b 

Fig. 3. Maximum relative error versus relative resistance of source for different order M of 

the order of polynomial (a) in fractional-rational expression and neural network (b). 

For implementation of the artificial neural network the parameter “spread” has been 

chosen as the tripled value of M-th part of the range of independent variable variation. 

The dependence of maximum relative error versus relative resistance of source for 

polynomial with non-integer power has wider region of minimum with less level than for 

approximating polynomial for different orders M , for instance M=14. But the fractional-

rational approximation using the interpolation by continued fraction for M=6 (the number 

of degrees of freedom is 13) provides better results. The neural networks have not 

preferable results in comparison with fractional-rational approximation ones for the case 

of equivalent numbers of degrees of freedom but for M=40 networks provide more 

accurate results. A comparison of the best error of approximation by different methods 

with the maximum orders of the models is presented in Fig. 4. 

Fig. 4. Maximum relative error versus relative resistance of source for different approximate models. 

5. Conclusions 

The best results of the inverse problem for semiconductor diode (determination of 

the incident microwave power from the voltage at the output of the detector) in 
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comparison with traditional approaches are provided by rational approximation based on 

continued fraction and the neural network on base of approximation with the radial basis 

function. 
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