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A PARTIALLY SPIN-RESTRICTED HARTREE-FOCK FUNCTION 

BASED ON THE ASYMPTOTIC PROJECTION METHOD  

A singe Slater determinant consisting of restricted and unrestricted, in spins, parts is proposed to 

construct a reference configuration for singlet excited states having the same symmetry as the ground 

one. A partially restricted Hartree-Fock approach is developed to derive amended equations 

determining the spatial molecular orbitals for singlet excited states. They present the natural base to 

describe the electron correlation in excited states using the well-established spin-annihilated 

perturbation theories. The efficiency of the proposed method is demonstrated by calculations of 

electronic singlet excitation energies for the Be atom and LiH molecule.  

Keywords: partially spin-restricted wave function, orthogonality constraints, excited states, 

perturbation theory. 

1. Introduction 

A single Slater determinant (Sladet) forms the basis of many modern quantum 

methods for studying the electronic structure of atoms and molecules (e.g. [1]). Present –

day approaches deal with two extreme schemes of designing a Sladet. A restricted 

Hartree-Fock (RHF) function with the doubly occupied spatial molecular orbitals (MOs) 

is usually applied to closed-shell systems. However, in several cases a RHF Sladet cannot 
even approximately describe the states of a molecular system such as those from regions 

of the potential energy surface which are far from equilibrium geometry or the singlet 

excited states (ESs). While, the unrestricted HF (UHF) Sladet, in which the electrons of 
opposite spins are assigned to spatially different orbitals, is capable correctly describing 

such situations. A UHF function, however, is not a spin eigenfunction and contains 

contamination by higher spin states. In systems where contamination is not small, the 
perturbation theory (PT) for incorporating the correlation effects may lead to weakly 

converging series (e.g. [2] and references therein). The approaches based on the Lowdin 

spin projection operator [3] are usually employed to remedy the spin contamination 

problem. This requires evaluation of expectation values of the Lowdin operator and 

presents severe computational difficulties.  

In this paper we introduce a so-called partially restricted HF (PRHF) function, 

which consists of restricted and unrestricted parts: 
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There are q orbitals with closed shell character, i.e. the α MOs ϕi
α 

, i= 1,2,…, q, are 

taken to be spatially identical to the β MOs ϕi
α
 = ϕi

β
 , i= 1,2,…, q. These orbitals form 

the so-called “core”- subspace. The other p orbitals have different spatial parts for 

different spins, i.e.  ϕi
α
 ≠ ϕi

β
 , i= q+1, q+2,…, q+p, and form the unrestricted part (so-

called unpaired electrons). In addition N=q+p is the number of electrons. 

One the one hand, such a Sladet as well as the UHF function as compared to the 

RHF function has the freedom of being symmetry broken and can be used as a reference 

configuration for the calculations of singlet excited states. On the other hand, this model 

has  advantage  compared to  the  fully UHF one due  to a   simple way to  design  spin 
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eigenstates. For example, such a function with two electrons in the unrestricted part (p=1) 

is just a mixture of singlet and triplet components. The application of a single Amos 

annihilator [4] to this function provides the pure spin state, whereas for the UHF function 

this procedure can produce a wave function which, in general, is still far from an 
eigenfunction of S2  

A PRHF function was first applied in [5] for describing a transition from the 

diradicals to the dicarbens. A modified coupling operator method has been used for the 
determination the ground state MOs which result from three coupled equations with 

different Fock operators. Generally, they represent fifth-order equations in LCAO 

coefficients. The formalism proposed in [5] as well as the open-shell Roothaan method 

[6] does not lend itself very readily to a well-defined PT.  PT calculations based on this 

formalism are problematic because there is no unique way to choose off-diagonal 

Lagrange multipliers coupling the closed and open-shell MOs (see, e.g. [7]). In [8, 9] we 

have proposed alternative open-shell HF method that does not involve off-diagonal 

Lagrange multipliers from which PT can be performed using the UHF formalism for the 

ground state and, therefore, ambiguity problems do not appear . Unlike [5, 8, 9], in the 

present work we shall consider singlet excited state calculations based on a PRHF 
reference function. Conceptual simplicity of such a function allows one, on the one hand, 

to develop the PT , which takes for ESs the same practically computational time as the 

genuine Moller-Plesset PT for the ground state and, on the other hand, to optimize a finite 

basis set for each individual state. It is especially important for the excited state 

calculations performed with restricted basis sets where the effects of basis incompleteness 

are comparable to the electron correlation effects. 

2. Singlet excited states and annihilated perturbation theory based  

on a PRHF function 

(i) We shall consider systems with the number of α electrons equal to the number of 

β electrons, n
α
 = n

β
 = p+q, S = Sz = 0 and n

α
 + n

β
 = N is the number of electrons. Let 

Φ0
(0) be the Sladet describing the ground state and constructed by the RHF method for 

closed shells. For simplicity, consider only the first singlet excited state. In [5], from the 

very beginning, the PRHF function (1) with the identical “core”  α and β orbitals was 

used to derive the equations for MOs. Unlike [5], for the excited state we start from an 

UHF Sladet where all the α orbitals, ϕi
α, are permitted to be spatially different from the β 

orbitals, ϕi
β.  

Some restrictions should be imposed on MOs to obtain a PRHF function for the first 

excited state. 

First, the subspaces of the closed-shell ‘core’ determined by ϕi
α
, i = 1,2,…, q, and 

ϕi
β, i = 1,2,…, q, must coincide. This requirement may be written as the following 

orthogonality constraint [8]: 
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=−∑
=

βαβ ϕϕ ic

q

i

i PI  i=1 ,2,…,q (2) 

where ααα ϕϕ i

q

i icP ∑ =
=

1
 is the orthoprojector on the “core” subspace of MOα.  

Second, the requirement that provides the orthogonality of states: 
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The restriction (3) allows one to avoid collapsing into the ground state. One can show that 

(3) can be written in terms of spatial orbitals in the form: 

.00

1

=∑
+
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αα ϕϕ i
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i P  with αα ϕϕ nnP 000 =  (4) 

where ϕ0n
α
 is the highest in orbital energy occupied MO from the ground state Sladet 

Φ0
(0)

. To obtain the equations for the MOs we require that the total energy 

)0()0( ΦΦ HEUHF =   

be stationary subject to the orthogonality constraints (2) and (4). These restrictions can be 

easily introduced into variational process using our asymptotic projection (AP) method 

developed earlier  [10,11]. Then the stationary condition 
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and AP methodology leads to the amended UHF equations for ES orbitals: 

,0)( 01 =−+− ααβα ϕελλ iic PPPFP λ1, λ → ∞,  

.0)( =−− ββαβ ϕελ iic PPFP  (5) 

Here Fα and Fβare standard Fock operators in the UHF method and P is the ortoprojector 

onto the subspace spanned by the chosen basis set optimized for a given ES that is 

different from the basis set of the ground one. As long ago as 1958 Shull and Lowdin [12] 
pointed out “the desirability of using different basis sets for different states”. This 

approach can provide a more compact representation of the accurate excited state wave 

functions than the traditional use of a common basis set for ground and excited states. 
As one can see from Eqs.(5) our formalism deals as does the UHF theory with the 

cubic equations with respect to the LCAO coefficients whereas a method developed in [5] 

leads to the fifth-degree equations. Eqs. (5) differ from the canonical UHF equations only 

by the terms 〈ϕi| P0 |ϕi〉 and 〈ϕi| Pc
γ) |ϕi〉, γ = α,β, which are easily calculated. In 

accordance with the AP method the constraint vector  (e.g. from the term  λ1 P0 this vector 

is ϕ0n
α
 )  tends to the eigenvector of the modified operator  F

α
 +λ1 P0  if  λ1→ ∞ [10,11]. 

Then the fulfillment of the condition (4) will follow automatically due to the 

orthogonality of the eigenvectors, which correspond to different eigenvalues of a self-

conjugate operator. In practice, the values λ1, ~ 103 and λ  ~ 102 have provided the 

accuracy required. 

(ii) Eqs. (5) present the natural base to apply the known results of the spin-
annihilated PT (e.g. [13] ) for calculating the correlation energy of excited states. In 

particular, the zeroth-order Hamiltonian H
(0)

 for the first excited state can be chosen in the 

form of the sum of Fock operators for each electron 

),()()0( kFkFH
n
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βα

βα  (6) 



V� N� Glushkov 

118 

 

 

with αααα ϕεϕ ii
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 and ββββ ϕεϕ ii

M

i

iF ∑=   

In our calculations we used  the PRHF function with two unpaired in the unrestricted part.  

The application of a single annihilator [4] 

)],2)(1(/[)]2)(1([ 22
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to the function (1) leads to the pure singlet spin-state function  
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Following the results of Ref. [13] we have for the projected SCF energy: 

)0(
1

)0( ΦΦ += s
SCF
proj HAE   

The second-order correction to the energy, E
(2)

 proj , of the first ES takes the form: 
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proj H εεεεΦΦ  (8) 
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Then the total energy Etotal  is  

)2(
proj

SCF
projtotal EEE +=   

The sums run over spin-orbitals, a, b are virtual orbitals, while i, j are occupied MOs 

and H is the Hamiltonian of a system. In contrast to the canonical PT for the ground state, 

singly excited configurations enter at E(2)
 proj. The third term in (8) appears because of the 

orthogonality constraint (3) imposed on the approximate lower state function and 

coupling integral 〈Φ (0)
proj| H | Φ0

(0)〉 ≠ 0, in general. Our experience showed that the last 

term contributes much less than other terms and at this stage of the calculations one may 

neglect the third term. 

3. Applications to electronic singlet excitation energies 

In this Section, the performance of the proposed method is demonstrated by 

calculations of excitation energies from the closed-shell ground state to the singlet ESs 

for the Be atom and LiH molecule.  The corresponding results are given in Tables 1, 2. 

Our calculations were carried out with basis sets consisting of s-type Gaussians: 18s4p. In 

addition, each p - function was represented by a linear combination of two s-functions 

(so-called lobe representation). The orbital exponents and their positions (for LiH) , were 
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determined by invoking the variational principles: for s-functions these parameters were 

found by minimizing the energy in the single determinant approximation whereas  the 

parameters of p-functions were determined by the best energy lowering in the second-

order PT. This makes it possible to minimize the error associated with truncation of one-

particle basis sets and, thus, to observe more clearly the errors of the method itself. More 

information about of such basis sets can be found in [14,15]. We compare our results with 

those of the precisional ab initio calculations obtained with extended basis sets and 

experimental data [16, 17].  

As one can see from Tables 1,2 the proposed method is capable of providing the 

balanced description of the ground and excited singlet states. 
Table 1  

Excitation energies  (eV) from the ground state 1s
2
2s

2 to singlet excited states of Be 

State 1S Expt  [16] Our method CISD  [16] CCSD  [16] FCI [16] 

1s2 2s3s   6.779 6.774 7.693 6.772 6.765 

1s2 2s4s   8.089 8.093 8.973 8.078 8.076 

 
Table 2  

Total energies and vertical excitation energies ∆Ε   (hartrees) of LiH at R=3.015 bohr 

Method Х 1Σ+ А 1Σ+ ∆Ε 

Our method 

CI [17] 

-8.047770 

-8.0640 

-7.913637 

-7.9301 

0.134567 

0.1339 

Expt [17] -8.0705 -7.9360 0.1345 

4. Conclusions 

In this paper we have proposed the partially spin-restricted Hartree-Fock function to 

describe the singlet excited states of atoms and molecules. One the one hand, such a 

function as well as the UHF function as compared to the RHF function has the freedom of 

being symmetry broken and can be used as a reference configuration for the calculations 

of singlet excited states. On the other hand, this model has advantage compared to the 

fully UHF one due to a simple way to design spin eigenstates.  

The efficiency of the  method has been demonstrated by calculations of electronic 

singlet excitation energies for the Be atom and LiH molecule.  

It is also useful to note that when an excited state under consideration is not 

described within the framework of the single-configuration, the PRHF model can be used  

to generate a multireference space of configurations (e.g. [18]).   
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