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NEW METHOD IN THE THEORY OF RELAXATION PROCESSES 

FOR NON-HOMOGENOUS MEDIA 

The Chapman–Enskog method for solving kinetic equations is generalized for the case of the 

presence of relaxation processes, which can take place in a spatially homogenous system. The 

investigation is based on the Bogolyubov idea of the functional hypothesis. For the first time, the 

relaxation processes are investigated at their final stage by going beyond a linearization and 

introducing a new small parameter in the theory. The proposed theory generalizes the known Grad 

approach, the main lack of which is the absence of a small expansion parameter. The conditions for the 

local equilibrium approximation validity and the role of the additional small parameters in the 

approximate solution of integral equations are investigated. As applications, the following problems are 

investigated: the formation of dissipative hydrodynamic fluxes in a simple gas (the Maxwell 

relaxation), the two-fluid hydrodynamics of completely ionized plasma (the relaxation of component 

temperatures and velocities), hydrodynamics of a system of polarons in polar dielectrics and 

semiconductors (temperature and velocity relaxation of the electron system), and hydrodynamics of a 

phonon system  in dielectrics (phonon drift velocity attenuation due to umklapp processes). 

Keywords: generalization of the Chapman–Enskog method, relaxation processes, completely ionized 

plasma, polar dielectrics and semiconductors, polarons, dielectrics. 

1. Introduction 

An arbitrary nonequilibrium state is described by the Liouville equation. Based on 

this equation, one can obtain kinetic equations in which a system is described by the one-

particle distribution function (DF)  f ( , )ap x t  (here and in the following, the subscripts  

, , ,...a b c  number the system components or the internal degrees of freedom of particles). 

This description becomes possible at times much greater than the characteristic time of 

particle collision colτ . Kinetic equations are widely used in condensed matter theory. In 

the spatially homogenous case, the DF f ( , )ap x t is independent of the coordinates and 

describes relaxation processes in a narrow sense of this term.  

Landau contributed considerably to their study with his local equilibrium concept 

[1], according to which the macroscopic parts of a system are described by equilibrium 

parameters and the corresponding DFs f L
ap . According to Landau, such states are due to 

the fact that in the parts of the system that interact weakly with one another equilibrium is 

quickly established, and then relaxation processes take place. The chief drawback of this 

approach is that the DF f L
ap  is not an exact solution to the kinetic equation. A classical 

application of these ideas is the Landau theory of plasma component temperature 

relaxation [2]. Grad contributed considerably to the theory of relaxation processes too [3]. 

He postulated an expression for the DF in the form of the product of the locally 

equilibrium distribution f L
ap  and a truncated series expansion in the orthogonal Hermite 

polynomials. A drawback of his method is the absence of a small parameter that does not 

allow one to obtain the DF on the basis of the kinetic equation. An important application                                                                                                         
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of these ideas is the Grad theory of Maxwellian relaxation (formation of dissipative 

hydrodynamic fluxes) [4]. 

A basis for the study of relaxation processes may be Bogolyubov’s reduced 

description method (RDM), which is based on his idea of the functional hypothesis (FH) 

[5] (see also [6]). This idea is a generalization of the concept of normal solutions to the 

Hilbert kinetic equation, and it proposes a DF calculation procedure in a perturbation 

theory. As distinct from Hilbert, Bogolyubov substantiates the emergence of reduced 

description as a result of natural evolution. However, in this case, too, the absence of a 

small parameter is a problem. A small parameter allows one to calculate structures 

introduced by the FH and is the starting point for its proof (see, for example, [6]). 

Bogolyubov’s RDM is a certain generalization of the Chapman–Enskog method (see, for 

example, [7]), which was intended for the study of spatially non-homogenous states with 

the aim to construct hydrodynamic equations. The topicality of refinement of today’s 

theory of relaxation processes is pointed out in the literature [8, 9]. 

In this paper, relaxation processes are studied at their final stage. This introduces a 

small parameter, which is revealed when comparing a linear and a quadratic relaxation 

theory (although it already becomes obvious from dimensionality considerations). We 

were the first to formulate this problem [10, 11] and develop it in detail [12]. Emphasis is 

on considering relaxation processes in the vicinity of standard (single-fluid) 

hydrodynamics, although the theory allows one to describe processes in the vicinity of 

kinetic states too. 

The paper, which is an overview of our results, is organized as follows. In Section 2, 

a general theory of relaxation processes at their final stage is constructed. Section 3 

discusses the application of the theory to plasma physics and solid-state physics.   

2. General theory of relaxation processes at their final stage 

We study nonequilibrium processes in a certain system using a kinetic equation for 

the one-particle DF f ( , )ap x t  (the subscript a  numbers the internal degrees of freedom or 

system components). Collision integral (f )apI  of this equation is a functional of the DF 

fap  as a function of the momentum lp .  

The main problem that is studied on the basis of the kinetic equation is the 

substantiation of the equations of standard (single-fluid) hydrodynamics, in which the 

system is described by the densities of additive integrals of motion, among which in most 

cases are the component particle number density ( , )an x t , the energy density ( , )x tε , and 

the momentum density ( , )l x tπ (the variables ( , )x tαζ ). They satisfy the conservation 

laws in differential form which contain the particle number flux density ( , )li x t , the 

energy flux density  ( , )lq x t , and the momentum flux density ( , )nlt x t  (variables 

( , )l x tαζ ). The conservation laws take place due to the properties of the collision integral 

which stem from the conservation of the number of particles, the energy, and the 

momentum, respectively, in collisions. Instead of the densities of the additive integrals of 

motion ( , )x tαζ , standard hydrodynamics uses, together with the component particle 

number density ( , )an x t , such quantities as the local temperature ( , )T x t  and mass (drift) 

velocity ( , )l x tυ  (parameters ( , )x tαξ ). All mentioned variables are defined by the 

standard way [6] and are  functionals of the DF ( , ) (f ( , ))x t x tα αζ ≡ ζ , 

( , ) (f ( , ))l lx t x tα αζ ≡ ζ , ( , ) (f ( , ))x t x tα αξ ≡ ξ  ( (f )αζ , (f )lαζ  are moments of the DF) . 
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A problem of great importance is the study of generalizations of hydrodynamics in 

which a system can be described by additional parameters ( , ) (f ( , ))i ix t x tθ ≡ θ  (which are 

functionals of the DF fap  and may be its moments too). The basis of our consideration, 

which relies on Bogolyubov’s RDM, is Bogolyubov’s idea of the functional hypothesis 

(FH) [6], which describes the nonequilibrium system DF structure at times much greater 

than some characteristic time 0τ  

0

f ( , ) f ( , ( ), ( ))ap apt
x t x t t

τ
→ ξ θ
≫

. (1) 

Here f ( , , )ap x ξ θ  is a functional of the reduced description parameters (RDPs) ( )xαξ , 

( )i xθ  as functions of the coordinates lx  , which does not depend on the initial state of the 

system f ( , 0)ap x t = .  The FH leads to a generalization of the Chapman–Enskog method, 

which is designed for constructing and studying equations of standard hydrodynamics [7]. 

The idea itself to seek for a solution of the kinetic equation in the form of the functional 

f ( , , )ap x ξ θ in the case of standard hydrodynamics belongs to Hilbert; however, he did not 

set forth the idea that the natural evolution of a system results in the reduced description.   

 The kinetic equation (1) together with the FH allows one to express the time 

derivative of an arbitrary parameter in terms of the RDPs ( , )x tαξ , ( , )i x tθ . In particular, 

it leads to closed equations of generalized hydrodynamics in the form   

( , ) ( ,f ( ( ), ( )))t x t L x t tα α∂ ξ = ξ θ ,            ( , ) ( , f ( ( ), ( )))t i ix t M x t t∂ θ = ξ θ , (2) 

where   ( ,f )L xα , ( ,f )iM x  are functionals known from the definitions of the RDPs.  

 The kinetic equation, the FH (1), and the time equations in (2) lead to the nonlinear 

integro-differential equation in the functional  f ( , , )ap x ξ θ  named the kinetic equation at 

the reduced description (KERD). When solving this equation, one should take into 

account the RDP definitions (f ( , ))α αξ ξ θ = ξ , (f ( , ))i iθ ξ θ = θ ,which are called the 

additional conditions to KERD. 

 The traditional study of hydrodynamic states assumes a weak spatial inhomogeneity 

of the system, which is expressed by the estimates  

1

( , )
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s
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x t
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x x

α∂ ξ

∂ ∂
,     
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∂ θ

∂ ∂
     ( 1g ≪ ). (3) 

The small parameter g  is estimated as fp /g l L=   where fpl  is the mean free path and L  

is the characteristic dimension of inhomogeneities in the system ( 1/ ~lx L
−∂ ∂ ).  

Unfortunately, the small parameter g  does not suffice to solve KERD in a 

corresponding perturbation theory, which is termed the perturbation theory in RDP 

gradients. In this theory we have contributions ( )f s
ap , ( )s

Lα , ( )s
iM  of the order s

g  

( 0n ≥ , (0) 0Lα =  ) to DF f ( , , )ap x ξ θ  and the right sides of time equations (2). 

KERD in the zeroth order in the gradients leads to the integro-differential equation 

with the additional conditions for contribution (0)fap  
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(0)

(0) (0) (0)
f

(f ) (f )
ap

i ap

i i

M I
∂

=
∂θ

∑ ,  (0)(f )i iθ = θ ,       (0)(f )i iθ = θ , (4) 

which are written in a somewhat schematic form. The nonlinear equation (4) with the 

additional conditions cannot be solved, thus giving no way to continue calculations in the 

perturbation theory.  This equation describes processes that may take place in spatially 

homogenous states that in this paper are termed relaxation process in a narrow sense of 

this term (in a wide sense, every nonequilibrium process is a relaxation process). 

However, the parameters ( , )i x tθ  can be chosen in such a way that in the usual 

hydrodynamic state (at fpt τ≫ ; fpτ  is free path time) they will be small quantity of the 

order ν . Then Eq. (5) can be sought in the form of a series in the powers of ν  

(0) 0 3f {1 ( )}ap ap api i apii i ii ii
w A B O g′ ′′

= + θ + θ θ + ν∑ ∑ , (6) 

where apw  is the equilibrium DF, and apiA , apiiB ′  are the functions of the parameters αξ  

to be found. This is the heart of our idea of generalization of the Chapman–Enskog 

method with the aim to study relaxation processes [10-12].  In this case, the time equation 

for the RDPs  iθ  has the structure 

0 3 1( , )t i i i i i i i i ii i i
a b O g g′ ′ ′ ′′ ′ ′′′ ′ ′′

∂ θ = − θ − θ θ + ν∑ ∑ , (7) 

where iia ′ , ii ib ′ ′′  are some functions of the parameters  αξ . We have proved that the apiA ’s 

are linear combinations of the eigenfunctions of the operator of the collision integral 

linearized in the vicinity of the DF apw , and the iia ′ ‘s  are linear combinations of the 

corresponding eigenvalues. So these quantities describe the kinetic modes of the system. 

In this general theory [12], we have studied the contributions (0,0)fap , (0,1)fap , (0,2)fap , (1,0)fap , and 

(1,1)fap  ( ( , )f ~m n m n
ap g ν ) to the nonequilibrium DF fap  and the generalized hydrodynamic 

equations (7) in the corresponding order of the perturbation theory.  

Some inconvenience of this formulation of our theory lies in the fact that going to 

standard hydrodynamics from the equations (7) calls for an RDM based on the additional 

functional hypothesis that introduced the dependence h ( , )i xθ ξ  of the parameters iθ  on 

the parameters αξ  in standard hydrodynamics. To overcome this problem in our paper 

[12] it is proposed to consider variations h( , ) ( , ( )) ( , )i i ix t x t x tδθ ≡ θ ξ − θ  as new RDPs that 

obviously are small and to introduce a new small parameter µ  by the estimate ~iδθ µ . 

In Grad’s well-known approach to the inclusion of relaxation processes into the 

theory of hydrodynamic phenomena [3, 4], the DF is postulated in the form  

f f {1 }L
ap ap api ii

h= + θ∑ ,           3
fap ip id p θ = θ∫  (8) 

and is not calculated in a perturbation theory (see the assessment of the Grad method in 

[8]). In this case, the system is described by the parameters of the local equilibrium 

distribution and the additional parameters iθ  (the ipθ ’s are their microscopic values). The 

functions apih  are determined from the second equation in (8), and they are chosen in the 

form of a linear combination of the tensor Hermite polynomials 
1... ( )

sn n aH pβ
�

, i.e. Grad’s 
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DF in (8) is a truncated series in these polynomials (the factor aβ  makes the polynomial 

argument dimensionless).   

3. Application of the proposed theory 

3.1. Maxwellian  relaxation in a simple gas  

 Consider a system of identical particles with energy 2 / 2p p mε =  which in addition 

to the variables of standard hydrodynamics αξ  (the particle number density n , the mass 

velocity lυ , and the temperature T ) is described by the additional parameters iθ : o
lq , 

o
nlπ , where o

lq  is the energy flux density and o
nlπ  is the traceless momentum flux density 

in the accompanying coordinate system ( / 3nl nl nl mmt tπ ≡ − δ ). After the free path time 

fpτ ,  the quantities o
lq , o

nlπ  go into the dissipative fluxes ho
lq , ho

nlπ , which describe the 

viscosity and the thermal conductivity of the system. It is the phenomenon of Maxwellian 

relaxation, whose theory was developed by Grad [3,4]. In this situation, the fluxes o
lq , o

nlπ  

may be considered to be small quantities o
nl nTπ ν∼ ,   1/2( / )o

nq nT T mν∼  where ν  is a 

new small parameter.  

 In the zeroth order in the gradients the system DF and time equation have structure 

similar to (6), (7). Obtained integral equations of the theory were sought for as truncated 

series in the orthogonal Sonine polynomials ( )n pS
α βε ( 0,1,2,...n = ; 1/ Tβ ≡ ) with an 

accuracy up to one and two polynomials. These polynomials are appropriate for the 

problem under consideration because they are orthogonal with the weight 1/2
p pw

α−ε  (see, 

for example, [13]). It is shown that Grad’s result for the damping coefficients qλ , πλ  is 

given by our one-polynomial approximation [12] but the two-polynomial approximation 

gives corrections to them. In the Grad theory [3, 4], the nonequilibrium DF is not sought 

for in any perturbation theory; instead, it is finally written similar to (6). In the considered 

problem it gives the so-called 13-moment Grad approximation in the kinetics of 

hydrodynamic states of a simple gas. It is shown [12] that Grad’s DF is given by the one-

polynomial approximation in the solution of obtained by us integral equations. Our two-

polynomial approximation refines Grad’s result.  

3.2. Two-fluid hydrodynamics of a completely ionized plasma  

 Let the hydrodynamic state of a completely ionized two-component plasma be 

described by the particle number densities an ( ,a e i= ), the component mass 

velocities alυ , and the component temperatures aT . The evolution of spatially non-

homogenous plasma is accompanied by the equalization of the component velocities and 

temperatures. On completion of the relaxation process, the plasma is described by 

standard (single-fluid) hydrodynamics, i.e. by the particle number densities an  and the 

common mass velocity  lυ  and temperatureT . Our study is based on the Landau kinetic 

equation. The above-mentioned RDPs are defined by standard formulas (see, for 

example, [14,15]). According to the general theory, the relaxation may be studied using 

the variations h
n ne neu = υ − υ , h

e eT Tτ = −  of the electron variables enυ , eT  from their 

values  h
enυ , h

eT  in the standard theory [16]. So the quantities nu , τ  play the role of the 

parameters iδθ  in the general theory and are considered to be small with a parameter µ , 
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which is introduced by the estimates  ~ Tτ µ ,  1/2~ ( / )l eu T mµ . The ion variables inυ , iT  

are expressed in terms of the electron variables enυ , eT  and the variables nυ , T  of 

standard hydrodynamics. Notice that the assumption of the smallness of the relative 

component velocity with the estimate 1/2~ ( / )l eu T mµ  is widely used in the literature [14, 

15] ( ~ne ni nuυ − υ ), however, without our construction of a systematic perturbation 

theory in the parameter µ . In the zeroth order in gradients, the system DF and the time 

equations may be written in the form (6), (7). The problem under consideration has a 

natural small parameter 1/2( / )e im mσ = , which can be used in the solution of the integral 

equations of the theory. We analyze the contributions of a perturbation theory in σ  up to 

terms of the next-to-the-leading order inclusive. They are calculated as truncated series in 

the Sonine polynomials, in each order in σ  the consideration being restricted to the one-

polynomial approximation [17, 18]. 

 In the literature, two-fluid hydrodynamics is usually constructed on the basis of the 

local equilibrium assumption (see, for example, [14, 15]), according to which the zero 

approximation in gradients (0)fap  of the DF fap   is given by the locally equilibrium 

distribution f ( )
a a

L
ap ap m aw T− υ≡  ( ( )apw T  is the Maxwell DF). In doing so, the contribution 

of the first order in gradients (1)fap  is sought for as a small correction to (0)f f L
ap ap= . This 

assumption is an approximation, which may be termed the local equilibrium 

approximation (LEA). This approach stems from the idea that in the electron and ion 

subsystems equilibrium with different temperatures and velocities is quickly established, 

after which the subsystem temperatures and velocities equalize. This idea cannot be true 

because the function f L
ap  is not an exact solution of the kinetic equation.  

 The LEA cannot be considered as a simplified (modified) version of the Chapman–

Enskog method. Only when a local equilibrium state is set up artificially can the LEA be 

considered as a theory of states in its vicinity. Well-known developments in this approach 

were made by Braginsky [14]; however, even his summarizing work [21] does not 

contain any systematic perturbation theory in gradients g  and the small electron-to-ion 

mass ratio σ . Our study of the LEA applicability limits shows that only the leading 

contributions in the powers of σ  to quantities in equations similar to (6), (7) taken in the 

one-polynomial approximation coincide with the LEA result. Next contributions of the 

theory refine this approximation. Notice that a detailed estimation of the role of these 

corrections calls for numerical calculations and depends on the ion charge.   
 We have also constructed a nonlinear (quadratic) relaxation theory [19], which is 

determined by the nonlinear terms in formulas of the type (6), (7). It is proved that even 

in the leading order in σ  the LEA fails to give correct results. We have also shown that 

quadratic contributions to the time equations slow down the relaxation processes in the 

system at 0τ > . We have studied the contributions (1,0)fap , (1,1)fap  to the DF of the first order 

in gradients (1)fap  ( (1, ) 1f ~s s
ap g µ ) and the corresponding contributions to the hydrodynamic 

equations with an additional analysis in a perturbation theory in the mass ratio σ  [20]. 

The contribution (1,0)fap  leads to the standard hydrodynamics of the system, and the 

contribution (1,1)fap  refines its kinetic coefficients (defines their temperature dependence 

via τ ) and introduces new dissipative processes that are due to the gradients of the 
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variations lu , τ . In particular, it is found that at 0τ >  the plasma viscosity and thermal 

conductivity decrease.  

3.3. Polaron hydrodynamics 

Polar dielectrics or polar semiconductors are considered. In such systems electrons 

form a rarefied subsystem which interacts with the phonon subsystem. Interaction-

dressed electrons are termed polarons. The investigation of non-equilibrium states of the 

polaron system is an important problem [22]. Interaction between electrons and phonons 

is described by the Froelich hamiltonian. Interaction of electron with optical phonons 

gives the main contribution to this interaction which has electrostatic nature and does not 

depend on the spin of an electron. For the investigation of the principal questions 

concerning the system, one usually neglects the band structure of the electron subsystem 

and chooses the energy of an electron in the form 2 / 2p p mε = . In this case the electron 

DF f p  summed up over the spin projections satisfies a kinetic equation with the usual 

structure and with the additional contribution of a weak constant electric field lE . In our 

consideration the phonon subsystem is assumed to be in an equilibrium state with 

temperature 0T . 

A kinetic equation for the electron subsystem was obtained by various researchers in 

the approximation of weak electron-phonon interaction. Without the assumption about 

weak inhomogeneity of the electron state a kinetic equation was obtained by one of the 

authors [23], which leads to a non-local collision integral ( , f )pI x . The usual collision 

integral takes into account the processes of emission and absorption of phonons by 

electrons. In these processes, the number of electrons is conserved but their momentum 

and energy are not conserved. Therefore, the conservation laws take additional terms that 

contain the electric field and sources of the energy and momentum.  

 The local temperature  T  and velocity lυ  of the polaron subsystem are defined by 

the standard formulas similar to ones used in the kinetic theory (see, for example, [6, 13, 

15]). According to our general theory [12], the electron number density n  belongs to the 

hydrodynamic parameters αξ , while the temperature T  and the velocity lυ  belong to the 

relaxation ones iθ . The standard hydrodynamic state of the electron subsystem is 

described by the diffusion equation [24],  and relaxation processes are reduced to the 

equalization of the electron T  and phonon 0T  temperatures and the establishment of the 

steady velocity 
l

E−µ  in the presence  of electric field ( µ  is the electron mobility ). A 

small parameter ν  that describes the system at the end of relaxation is chosen by the 

estimates
0 0

~T T Tτ ≡ − ν , 1/2
0~ ( )l mTυ ν , 1/2

0~ ( )lE nTν , which already follow from 

dimension considerations ( 2
E  has the dimension of the energy density) . 

 In the zero approximation in gradients, the DF of the system and the time equations 

have the structure of the type (6) (7).  Integral equations of the theory are solved by us by 

the method of truncated expansion in the Sonine polynomials with accuracy up to two 

polynomials inclusive [23]. In the literature the LEA is often used, which implies that the 

polaron DF f p  in the zero order in gradients (0)f p is given by the local equilibrium DF 

f ( )L
p p mw T− υ≡  ( ( )pw T  is the Maxwell DF; see, for example, [22]). Our consideration 

shows [23] that the LEA corresponds to the calculation of the quantities in formulas 

similar to (6), (7) in the one-polynomial approximation, and it is corrected in the two-
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polynomial approximation. But for additional terms in (6), (7) related to the electric field 

the LEA gives a wrong result even in the one-polynomial approximation. 

 Non-linear (quadratic) relaxation is investigated by us too. The coefficients in the 

time equations of the type (7) are calculated in the one- and the two-polynomial 

approximation and compared with the LEA results. Conditions under which the 

contributions of the quadratic relaxation are small in comparison with the contributions of 

the linear theory and restrictions for the small parameter ν  are analyzed. For example, 

for high phonon temperatures 0T compared to the Debye temperature DT  it was 

established the restriction for ν  of the form 2
0 0( / ) ln( / )D DT T T Tν≪ . 

 Spatially non-homogenous states of the polaron subsystem are investigated based on 

the contributions (1,0)f p , (1,1)f p  to the DF of the first order in gradients (1)f p ( (1, ) 1f ~s s
p g ν ) 

[25-27]. The corresponding contributions to the hydrodynamic equations are found and 

analyzed. It is noted that the phenomenon of momentum and energy transfer caused by 

the gradients of the polaron number n  exists. The effect of relaxation processes and an 

external electric field on the kinetic coefficients of the system is analyzed including the 

viscosity and conductivity of the polaron subsystem. It is established on the basis of the 

non-local collision integral of the system obtained in [23] that it leads to small corrections 

in the electron-phonon interaction to the kinetic coefficients.  

 After the end of the temperature and velocity relaxation the system is described only 

by the density n , which satisfies the diffusion equation [24]. It was shown [28] that one 

can investigate these cases both on the basis of the kinetic equation and the hydrodynamic 

equations for the variables n , T , lυ  using our generalization of the Chapman–Enskog 

method. 

3.4. Phonon hydrodynamics in dielectrics 

 The hydrodynamics of the phonon system of a dielectric is investigated. We restrict 

ourselves to the consideration of crystal lattices with the cubic symmetry. The quasi-

momentum of a phonon lp  is changed within the Brillouin zone B ,  and it do not 

conserve in the umklapp processes. The consideration is based on the kinetic equation for 

the phonon DF f ( , )p x tα  (the subscript α  indicates the polarization) averaged over an 

elementary cell of the lattice. In an equilibrium state the DF f ( , )p x tα  does not depend on 

the coordinates, and in hydrodynamic states its gradients can be considered as small 

quantities. The kinetic equation takes into account at least inelastic pair collisions of 

phonons and the decay of a phonon into a pair of phonons; therefore, the number of 

phonons does not conserve in phonon processes. In this case, hydrodynamic equations 

follow from the energy conservation law and the momentum variation law with a source 

(friction force density) that is defined by the contribution of the umklapp processes to the 

collision integral. Hydrodynamic processes in the phonon system of a dielectric are 

described by the temperature T  and the drift velocity nυ . Their investigation is a classic 

problem of the solid state theory (especially in connection with the role of the umklapp 

processes in the conductivity of a dielectric). Usually one proceeds from the LEA (see, 

for example, [13, 29, 30]), which assumes that the hydrodynamic DF f pα  in the zero-in-

gradients approximation (0)f pα  is given by the local equilibrium distribution f L
p pnα α= , 

where 
( )/ 1[ 1]p l lp T

pn e αε − υ −
α ≡ −  is the shifted Planck distribution ( pαε  is energy of a 
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phonon). According to Landau, this distribution gives standard definition of the drift 

velocity nυ  of the phonon system. The assumption of local equilibrium of the system at 

low temperatures is based on the idea that in these states the velocity varies slowly and at 

each value of the velocity the equilibrium described by the distribution pnα  has time to be 

established. However, this argument is not true because the distribution pnα is not an 

exact solution of the kinetic equation.  

Therefore, a general definition of the drift velocity nυ  is proposed by us with the 

help of an expansion of the average densities of phonon energy and momentum [31] in 

series in powers of nυ  which take into account the symmetry of the crystal. The 

corresponding small parameter µ  defines the magnitude of the drift velocity by the 

estimate ~n cυ µ  where c  is the velocity of the second sound in the dielectric. The 

higher terms in the expansion have a complicated tensor structure even for a crystal with 

cubic symmetry, which forces us to limit ourselves to the accuracy specified in the 

definition of nυ . In the standard theory [13, 28, 29] the averages of energy and 

momentum densities are groundlessly calculated with the distribution pnα  that is in the 

LEA. In our theory these averages are calculated with the DF  f pα  to be found in a 

perturbation theory in the parameter µ . According to our general theory [12] the 

nonequilibrium DF and time equation for the velocity and temperature in the zero order in 

the gradients are given by formulas similar to (6), (7). Spatially non-homogenous states 

of the phonon system are investigated too based on the contributions (1,0)f pα , (1,1)f pα  to the DF 

of the first order in gradients (1)f pα ( (1, ) 1f ~s s
p gα µ ) [31]. The corresponding contributions to 

the hydrodynamic equations are found and analyzed. It is noted that the phenomenon of 

friction depending on the temperature gradient and related to the umklapp processes 

exists (it was predicted first in the plasma physics [14]).  

A further investigation of integral equations of the theory is unreal even for crystals 

of the cubic symmetry considered by us. There are certain possibilities at temperatures 

less than the Debye temperature DT T<  because the contribution of the umklapp 

processes to the linearized collision integral is small in comparison with the contribution 

of the normal processes even at relatively low temperatures: it has the order /DT T
e

−λ ≡  

(see, for example, [6, 13]). Integral equations of our theory are solved by a simple 

iteration procedure in the powers of λ , which reduces them to Fredholm equations of the 

second kind that takes into account only normal collisions [31]. The investigation shows 

that the LEA is true only when using the standard definition of the drift velocity.  

The solution of the obtained integral equations by the method of truncated expansion 

in orthogonal polynomials can be done only by simplifying the model. At DT T≪  kinetic 

processes in the phonon system are governed by long wave acoustic phonons [13, 29] and 

the exact theory can be approximated by some isotropic model based on the elasticity 

theory (see, for example, [30]). In this model energy of a phonon equals p c pα αε =  and 

the calculation is made using the orthogonal polynomials ( )s
n pαΦ βε  defined by the 

weight function (1 )s o o
p p pn nα α αε +  where 

/ 1[ 1]p To
pn e αε −

α ≡ −  is the unshifted Planck 

distribution.  



V. N. Gorev, S. A. Sokolovsky, A. I. Sokolovsky 

92 

A classic problem of the dielectric theory is the problem of calculation of the heat 

conductivity for steady states of the system. Hydrodynamic equations in a steady state are 

solved by us in a perturbation theory in small gradients of the temperature. Finally, the 

expression for the heat conductivity in steady states stκ  is obtained [31] which shows that 

in the absence of the umklapp processes stκ = ∞ . One should expect this because steady 

states in an isolated dielectric exist only because of the umklapp processes. At low 

temperatures DT T≪  in the main approximation in λ  and with the standard definition of 

the drift velocity our expression for stκ  gives [31] the well-known result by Akhiezer 

(see [6, 29]). 

4. Conclusions 

 The Chapman–Enskog method of solution of kinetic equations is generalized to the 

case of the presence of relaxation processes in the system.  The generalization is based on 

Bogolyubov’s idea of the functional hypothesis. Linear and nonlinear relaxation 

processes are investigated for the first time at their final stage on the basis of a new small 

parameter.  

 The proposed theory of linear relaxation reduces to the solution of spectral problems 

for the operator of the linearized collision integral (that is, to Fredholm equations of the 

second kind). The convergence of the solutions of these equations obtained by the method 

of the truncated expansion in orthogonal polynomials needs a further investigation. The 

mentioned spectral problems describe the kinetic modes of the system. The standard 

Chapman–Enskog method reduces to the solution of a Fredholm integral equation of the 

first kind, and the convergence of the above-mentioned method in this case can be 

substantiated.   

 It is established that the local equilibrium assumption is only approximate. This 

leads to corrections, the significance of which needs a further numerical investigation.  

 As applications of the proposed theory, relaxation processes in well-known and 

important systems are investigated. These processes allow an experimental investigation 

because their description uses parameters that can be measured.   

It is shown that the presence of additional small parameters of the theory (small 

mass ratio, low temperatures) can significantly simplify the investigation. In particular, 

the spectral problems of the theory can be reduced to the solution of Fredholm integral 

equations of the first kind. 
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