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TO KINETICS OF QUANTUM SYSTEMS IN A MEDIUM

Kinetics of a quantum system immersed in an equilibrium medium and completely described by
its statistical operator is investigated. Interaction of the system and medium is considered to be small.
The case of a separable interaction that very common in the most applications is investigated in details.
A Kkinetic equation for free point particle which interacts with a medium of point particles is obtained
in terms of the Wigner distribution function of the particle. The derived kinetic equation does not
assume that the Wigner distribution depends on coordinates weakly and therefore describes strong
spatially inhomogeneous (localized) states of the particle. The elaborated theory is applied also to a
system of two-level emitters and photons interacting with an equilibrium phonon medium. Phonons
take into account consistently the motion of emitters in a crystalloid solid. A kinetic equation for the
statistical operator of the system of the emitters and photons is obtained. It can be applied for
investigating the effect of emitter motion on the superradiance phenomenon. The developed theory
provides a sequential approach to the reduction of the problem dimensionality by introducing an
effective interaction that corresponds to the modern trends in dynamics of complicated systems.

Key words: statistical operator, completely described quantum system, equilibrium medium, the basic
kinetic equation, two-level emitters, effective interaction.

JocaimzkyeTbesi KiHeTMKa IMOBHO ONHCAHOI CBOIM CTAaTHCTHYHMM ONEPAaTOPOM KBaHTOBOI
CHCTEeMH, MOMillleHOT 10 PiBHOBA:KHOrO cepegoBuina. Bzaemonis cucremu i cepeoBHIIA BBAKAETHCSA
cj1a0ko10. J/Iok1agHo J0CaiTxKeHo BUIIAI0K cenapadebHOI B3aEMOIi, ika 3yCTPiYacTbesl Y nepeBaskHiil
OlabIIOCTI 3acTOCYBaHb. Y TepMiHax BirHepiBcbkoi pyHKUIl po3noaily oTpuMaHo KiHeTHYHe PiBHAHHSA
I BiTbHOI TOYKOBOI YaCTHHKH, fIKa B3a€MOJi€ 3 cepedOBHINEM i3 TOYKOBHX YacTHHOK. BuBeneHe
KiHeTHYHe PiBHSIHHA He mepeadauae caadkoi 3ajeskHocTi GpyHKUii po3moniny Big koopauHart, i ToMy
OINCYE TAKOXK CHJILHO HEOTHOPiHI (JiokaJizoBaHi) cTaHn YyacTUHKH. Po3podiiena Teopisi 3acTocoBana
A0 CHCTeMH NABOPiBHEBMX BHNPOMiHIOBa4iB i ¢OTOHIB, B3aeMoail0UHX i3 PiBHOBa:KHUM (POHOHHMM
cepenopuiieM. ®OHOHH MOCTIIOBHO BPaXOBYKOThb PyX BHIPOMiHIOBa4iB y KPHCTATIYHOMY TBepAOMY
Timi. OTpuMaHo KiHeTHYHe PiBHAHHSI 1JIsl CTATHCTUYHOrO ONepaTopa CHUCTeMH BHIPOMiHIOBAYiB i
¢dotonis, mo Ka€ ocHOBY 151 J0CTiIKEHHs BILIMBY PyXy aTOMiB Ha sIBHIEe HaJBHIPOMiHIOBaHHS.
Pospunena Teopisi gae mocaigoBHMii migxixn g0 3MeHIIeHHsi po3MipHoOCcTI 3agayi  HLISIXOM
3anpoBajiKeHHd e(peKTHBHOI B3a€MO/il, 10 BiAMOBiIa€ TeHAEHIiIM TUHAMIKY CKJIAJHUX CHCTEM.

KirouoBi cioBa: cTaTHCTHYHHMII omepaTop, IIOBHO ONNMCaHa KBaHTOBA CHUCTEMa, PIBHOBaKHE
CepeIoBHIIe, OCHOBHE KIHETHYHE PiBHSAHHS, JBOPIBHEB] BUIIPOMIHIOBadi, €()eKTHBHA B3a€EMOIIS.

Hccnenyercsi KHHETHKA TMOJIHO ONMHMCAHHONH CBOMM CTATHCTHYECKMM OIEPATOPOM KBAHTOBOIi
CHCTEeMbl, NOMeLleHHOii B paBHOBecHYIO cpeny. B3ammoneiictBume cucreMbl H cpelbl CUHMTAeTcs
c1adbiM. IloapoOHo uccienoBan ciaydaii cemapa0eabHOr0 B3aMMOJEiCTBHS, KOTOpoe BCTpevaeTcs: B
npeodasaomeM 00JbIIMHCTBE NMpUMeHeHHIl. B TepMuHax BHrHepoBcKoil GpyHKIUU pacnpeaejeHHs
NMOJIy4YeHO KHHEeTHYeCKOe YpaBHeHHe /ISl CBOOOIHOI TOUeYHO! YacTHIIbI, KOTOpasi B3aUMOJelcTBYeT
€O cpeloil M3 TOYEUHBIX 4YacTul. BbiBeJeHHOe KMHeTHYeCKOe ypaBHeHHe He INpejmnoJaraer cjaadoii
3aBHCHMOCTH (PYHKLMHU pacrpeaeeHHs] OT KOOPAMHAT, H M0ITOMY ONMHUCHIBAET CHJIbHOHEOIHOPOAHBIE
(JIOKQJIM30BAHHbIE) COCTOSIHMS uYacTunbl. Pa3padoraHHass Teopusi TNpUMEHeHa K CHCTeMe
JIBYXYPOBHEBBIX H3jay4yaTeseil 1 (pOTOHOB, B3aHMOJEHCTBYIOIIUX ¢ PaBHOBeCHOH ()OHOHHOI cpenoii.
DoHOHBI MOCJIEA0BATEILHO YUHTHIBAIOT ABUKEHHE H3IydaTeseil B KPUCTANIMYECKOM TBEPAOM TeJle.
IMosyyeHO KHHeTHYeCKHe YpaBHeHHe ISl CTATHCTHYECKOro OIepaTopa cHCTeMbl H3Jy4aTesed M
¢oronos. Ero Mo:kHo NpUMEHUTDH /ISl UCCIEAOBAHNS BJIHMSHUS JABM/KEHHS M3JIy4aTesiell Ha siBJIeHHUe
cBepxusiayyenusi. PasBurasi Teopusi 1aeT mocijie0BaTeJbHbIH NMOAX0A K YMEHbIIEHHIO Pa3MePHOCTH
3a/1a4M 3a cueT BBeJeHUs Y (PEeKTHUBHOI0 B3aHMO/EHCTBHS, YTO OTBeYaeT COBPEeMEHHBIM TeHACHIHAM
HCCJIeIOBAHNS IMHAMHKH CJIOKHBIX CHCTEM.

Ki1ioueBble cj10Ba: CTATUCTHYECKUH ONEpaTop, MOJHO ONMCAHHAs KBAHTOBAs CHCTEMA, PaBHOBECHAs
cpena, OCHOBHOE KMHETHYECKOE ypaBHEHHUE, IBYXYPOBHEBbIE M3JTydaTenH, 3G HexTuBHOE B3auMOAeiCTBHE.
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1. Introduction

System (s) kinetics in medium (m) is an actual problem of the modern theory of
nonequilibrium processes. Kinetics of a fully described system interacting with
surrounding (environment, medium, bath, reservoir) is an important special case. Here the
full description means describing a system by dint of a statistical operator (SO) p, (). In

fact in such problem it comes to the quantum mechanics of the open (dissipative) system
(see, for example, the review in [1]; in literature kinetic equations for SO p (¢) are called

"master equation”, or "basic kinetic equation”. In such investigations the surrounding is
supposed to be a large system. It means that system number of degrees of freedom is
much less than one for the medium. This assumption allows neglecting the feedback
effect on the system environment. Most often additionally it is considered that the
medium is equilibrium and its interaction with the system is weak.

In fact, it comes to the reduced description of a nonequilibrium state of a composite
system s+m . The state of s+m is fully described by its SO p(¢) ; this SO is not defined

by the SO p,(¢). In the literature different approximations are applied, but the problem of

the transition to long times remains unsolved. The point is that the reduced description
becomes possible after some time T, has elapsed and consideration of this generally

accepted idea is not trivial (the paper [2] may be mentioned as an example of lightweight
attitude to this problem; there a system of spins (emitters) and phonons placed in a
medium of photons).

The problem is solved in the method of reduced description (MRD) by Bogolyubov
which is based on his idea of functional hypothesis (FH). The term "functional
hypothesis" is traditional. Actually, its proof is begun with the development of the
calculation procedure in some perturbation theory for mathematical objects introduced in
it, and this calculation is done at each application of MRD (see, e.g., MRD review in [3]).

A substantial contribution to the development of the theory of such systems was
done by the papers [4, 5], where on the basis of Bogolyubov MRD a general kinetic
equation for the SO of a system placed into an environment was obtained. In [4] on the
example of an equilibrium boson medium it is also shown that while taking into account
the macroscopic nature of the environment (with using the thermodynamic limit
transition), the system does not change the quasi-equilibrium state of the environment.
Note that kinetics of a fully described quantum system in a nonequilibrium medium is
studied in [6].

It should be emphasized that investigations of properties of fully described quantum
systems interacting with macroscopic systems are essential for experiments and devices
with nanosystems. The matter is that all work with such systems is performed with using
macroscopic devices (in the simplest case just contacts).

Our paper is organized in such a way. In the Section 2 the result of the paper [1] for
the case of an equilibrium medium is obtained simplistically. In the Section 3 the general
theory is concretized for a separable interaction. The Section 4 is devoted to deriving the
kinetic equation for a free particle placed to medium. In the Section 5 kinetics of a system
of emitters, photons, and phonons taking into account emitter motion and forming
equilibrium environment, is considered.

2. Kinetic equation for a fully described system placed to an equilibrium medium

Relying on the papers [4, 5], we shall consider a system s+m consisting of the
system s and equilibrium medium m. Let H, and H, be the spaces of states of s and
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To kinetics of quantum systems in a medium

m.Then H,, =H ®H,, is the state space of s+m . The statistical operator (SO) of the
composite system p(z) satisfies the quantum Liouville equation

?z—%[ﬁ,p(m, H=H,+H,+H,,, (1)

where H, H,, and H, are Hamilton operators of systems s+m, s, and m, wherein

I—AIM describes the interaction between s and m. SO p (¢) of the system s is defined by
the formula

p,()=Sp,.p(t) )

where Sp,, is the trace over the medium states in the space H, ®H,, (it transforms the

operators of H, ® H,, into the operators of H_ space and it should be distinguished from
the usual trace Sp,, in the space H,,). The structure and properties of the operators Sp,,

and Sp,,, their analogues Sp,and Sp,, and also the trace Sp in the space H,,, are

s+m
described in details in the book [7]. They are widely used in literature (see, for example,

[8D.
Let us suppose that the system s and medium m interact weakly and during the
time 7, in the system m an equilibrium state described with the Gibbs distribution

corresponding to the temperature 7, is achieved. We shall construct the reduced
description of s+m in terms of p (¢).
According to (1) and (2), the SO p_(¢) satisfies an equation

ap, (1) _

i ix A
o —E[HS’PS(I)]—%Spm[Hsm,P(t)] 3)

We put the Bogolyubov reduced description method (see, e. g. [3]) in the basis of
our consideration. The method is based on his idea of the functional hypothesis (FH). To
obtain a closed equation for p,(#), we put down FH in the form

PO—=—p(,(.p))  (Py=p(1=0)), @

1,

where the designation p (¢,p,) for the parameter p () at ¢ > 1, is introduced

ps(t)%ps(t’po)' (5)

1,

The FH means that the SO of the system after some time passing depends on time
through the parameters that give the reduced description of the system state (in our case
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such parameter is p,(¢,p,) — the SO of the system s ). Note that the SO p(p,) does not
depend on the initial state p,.
Suppose that SO p(p,(t,p,)) meets Eq. (1) not only at ¢>> 1, but also for all 1>0.
It continues the reduced description parameter p,(¢,p,) to times ¢ <7, then at >0 this
parameter satisfies a closed equation
ap,(t,p,)

—, L(p,(.py))s (6)

where the right side of the equation is expressed via p(p,) by the formula

i~ iz o~
L(p,) E—%[HS,PS]—%Sph[Hsm,p(Ps)]- (7
According to our previous consideration SO p(p,) satisfies the equations

) )
PP 7 (o) =Lp(p.). Sp,P(P,) =P, - ®
Ip

5

These equations are known [3] to have more than one solution. Therefore, they
should be supplemented by a certain condition that is called a limit one, according to
Bogolyubov. It should be a statement about the evolution of the system s+m in the
positive direction of time. We proceed from the following relation [1]

L L _
eMp(p)—e M pw,  (Ly=L,+L,). ©)
where w,, is an equilibrium SO of the medium m
Q,~H,+it,N,,
T,

WmEe " ’ SpmM}mE1 (L W, =0)

m " m

(10)

The left side of (9) is a SO of s+m at the time ¢ when evolution without interaction of
s and m occurs, if p(p,) is taken as the initial SO of s+m. Formula (9) actually
expresses the principle of spatial correlation weakening because s+m evolution without
interaction § with m "spreads" the systems in space. As the result, p(ps) is transformed

into the product of the system SO p, and the equilibrium SO w,, of the environment.

Therefore, the relation (9) can be called the boundary condition of complete correlation
weakening.
On this basis in papers [4, 5] a kinetic equation for the SO of a system in the

medium is obtained with accuracy up to second-order (in interaction H_ ) contributions

sm

inclusively

9P,

i A i i A
=__H’ __S H Fsm __S m Hrm’K s md?
5 h[ 5P 2 Pl H 5P W, 1 > p.[H,, . Kpw,] (11)

where designated

sm

.0
KA:é_J;dT{[A’I:Ism(f)]—wmgpm[ﬁ,lfl (7)]}’
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(12)

0

i i
Ao tHo A —otH, A A A
A(t)y=e" Ae ; Hy=H +H,

(A is an arbitrary operator in H_, ). The kinetic equation (11) gives the full description

s+m
of a quantum system placed into the equilibrium medium. In other words, it is a basic
equation of quantum mechanics in medium.

3. Kinetic equation for a system in an equilibrium medium: separable
interaction
Further study of the kinetic equation (11) requires concretizing the interaction
operator H o - We assume that it has the structure
Hsm =z§i’/hi (13)
i
where operators §; and s, act, correspondingly, in the state spaces H, and H, of the

systems s and m. This interaction is very common, as evidenced by our following
examples, and called separable one. For interactions (13) calculations are simplified by
using identities
[4,.B,1=0, [AA,.BB,1=ABIA, B,1+A,B1B,A,,

gpmAAslam = AAsSpmAAm ’ Spnl[Aln’énl] = 0 : (14)

On this basis, we have for the second contribution to (11)
§pm[F}sm’pswm]:[Z‘g‘\z‘%i’ps] (Am ESpm wm"im) (15)

Eq. (11) includes also the operator K presented in (12). It is determined with interaction
in the Dirac picture

B om(n=e’ e . (16)

H,(1)= ZSi (m;(t), S;(1)=e" “Se
and contains a contribution that is analogous to (15)
Spm [pv Wins I:Ism (T)] = Z [pv ’ 3:i (T)] Spmrhi (T)Wm = [pv 4 Z §i (T)%] (17)

(the trace Sp,,, (T)w,, does not depend on 1)

Further calculations of the right side of the kinetic equation (11) give with taking
into account two formulas from (14)

iz o~ R .
_;Spm[Hsm’Kpswm] = ?Z J- d‘cspm{[si’pssi’(T)][Wm’mi’(T)]mi -

H8,2 [y Sy O (D)W, i1, = 1ty [5,.[p . 5, (O 1w, 77, } (18)

m 1 1

This expression can be written in the form
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1

~Spul, Koowy 1= 3 (150, 41-15:.Bp, ) (19

where designations

0 0
/AX,. = Z j drs; (T (D) éi = Z j drs; (0 (1)) (20)

7
I —oco I —oo

and correlation functions of medium

1)

are introduced.

With taking into account formulas (15) and (19), the kinetic equation (11) takes the
form

d i (e~ o L
apts =_E[Hsff’ps]+Fz([si’psAi]_[Si’Bips])’ Hsﬁ EHs+zsimi (22)

where the right side is calculated with accuracy to second-order in I-Alms contributions

inclusively.
Note that the linearity of this equation is related to neglecting the feedback of the
system on the environment (taking into account this impact was discussed in [4, 6]).

Equation (22) contains the effective Hamilton operator I—Alfff that accounts effects of the
self-consistent field.

4. Kinetic equation for a point particle in an equilibrium medium

Let us consider the case of a point particle interacting with point particles of the
environment through a pair potential

H, =% +UR) ., H,, = ;cba £=%, )= [d’¥O1%—x Di(x) (23)
where the operator of particle density is introduced
AX) =Y 3(x—R,). 24)
It is convenient to put down the Hamilton operator of interaction H 4 10 the form
H,, =é;vk e A, Ty E{[d3xﬁ(x)e’ik", (25)

where Fourier transformation was done

—ikx 1 ikx
vks.v[d3xd>(lxl)e Yo @xh=g vt (26)

22



To kinetics of quantum systems in a medium

(v, depends only on k module). Here the second formula implements the periodic
continuation of the interaction potential that at a rather great volume of the system V

accurately reproduces the potential ®(Ix1) . Wave vectors k take the values
k, =2mn, /V'", neZ
(it corresponds to using periodic boundary conditions) and sums over wave vectors are

converted into integrals at great volumes

1
(2n)°

jd3k(...)

1
V%“("')T}
The Hamilton operator (25) introduced above takes the form (17) at replacement
i=k, Y- §i—>\‘//—keik", i — 7 . (27)
i k

To simplify the resulting kinetic equation (22), we note that averages of particle
number density Fourier component products with the equilibrium statistical operator w,,

have a property
At At A A At A
My ool yer oMy~ 8k1+...+k5,k{+4..+k;» (7 =ny). (28)

Hence, in particular, we have

= A _ A A A ~ A2
;= iy = 16dy o5 (i, (D)) = | Ay (D, =y 8y g | Sy

2

~ ~ < A Vi ik
[5.,p, S, (D], my —>F[e' X

) Pseik’im ]”_051(,0 ”_06k’,0 =0
and therefore, in accordance with (23) we obtain
0 0
A A% ke A N N A% _ra A
A —>7" I dre ™ R (DR) B, —)7" j dve™™ (A, A7 (1))

In view of these formulas the kinetic equation (22) takes the form

dp i A
—=——[H_.p,1+1(p,), 29
> h[ P 1+ 1(py) (29)
where the collision integral
1 ik % 1 ik B
1(p)=——>vi ([**.p, A - [e™* . B,p,]) (30)
V3
is introduced and designations
~ 1 - .1 -
A, :V_£ dre ™ O (Dn) . By =7_£ dre”™ XD (4 7 (1) . 31)
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are used. The obtained kinetic equation (29) is valid for a point particle in an arbitrary
external field. In the case of free particles in the environment, in accordance with (16),
the formulas (31) include

B.. (32)

Proceed to further analysis of the kinetic equation (29). Instead of the statistical
operator of a particle p, it is expedient to use the Wigner distribution function [4, 5]

defined by the formula

£,0) = [d*x'(x=x'/ 21p, 1x+x'/2) e (33)

where 1x) is eigenvector of the coordinate operator X,. The Wigner function is the
closest to the classical one-particle distribution function, since it is real and quantities

1
(2mh)’

1
w1<x>s<x|ps|x>=(2n—h)3jd3pf,,(x>, w,(p)=(plp, Ip)= [&'xf,(0,  (34)

are probability densities of particle coordinate and momentum values, correspondingly,
(Ip) is an eigenvector of the particle momentum operator p, ). For the transition from

momentum to coordinate representation and vice versa, the conditions of completeness
and expression for (x|p) are useful

1 %px

J'd3x|x><xl=i, jd3plp><pl=i, <X|P>=W6

Simple calculations show that the kinetic equation (29) can be written in terms of the
Wigner distribution function (33) as

6,0 _ p, I,(%)
ot m 0x,

+1,(x,f). (35)

Herewith the collision integral is given by the formulas

iy
n

Ip(x,f)zjd3x'<x—x'/2lI(ps)|x+x'/2>e ,

1 I K& SikK(D) _ kR ik(
I(PAY)=WZJ‘d1gk(T)[ek p e KRD _ gk ik ()Ps]

k —w

where designated

8, (1 = ViL( (DR + iy (D)]. (36)
To calculate the required matrix elements, we note that a formula is valid
_ikl 5+ k*h R
, zk(x+mp] _ ezﬁte_ikﬁe—likp , (37)

which is a consequent of the Glauber identity
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eA+1§ _ eAeBe—a/Z (o= [;\,l}] ).
On the basis of the relation (37), we consistently find the matrix elements

k%h T
e —7T _ —i—kp
(x1e7™@ | py = e2m KXo m x| p)y,

Ko B
(xle ™ Xy =¢ om” ik S(X x -k— j
m

which allow to calculate the contributions to the collision integral

i, i
e P —px h —lep €]
jd3x’<x—x’/2|e"“pse O I x+x/2) et =fp,kh(x+k2—r)eh ey
m

n—Ep]

’ ’ ikx —ikx ’ L X i[sl’*k
[d* ' (x=x 121™e 5 p 1x+x/2) "' =fp(x—kzlr)eﬁ
m

As aresult, with taking into account these formulas the collision integral acquires the
final view

1,(x,f)= —ZI drgm)[pkh(wk )~ 1, (x —k—)} e

k —oo

The kinetic equation (35) with collision integral (38) completely describes the dynamics
of a free quantum particle placed in equilibrium environment. Therefore, it can be
considered as the basic equation of quantum mechanics in such a situation. It is non-local
in space and in this sense may describe strong nonuniform states of the particle. First time
such equation for an electron (polaron) in the phonon medium were obtained in [4].

5. Kinetic equation for emitter system

Let us consider emitters in a crystal; their oscillating motion will be described in
terms of phonons (system m ). The internal degrees of freedom of emitters, photons, and
the interaction between them in the absence of oscillations will be assumed as a system
s . The Hamilton operator of s+m system can be written, according to [9], in the form

A=H,+H +H,, H = (E R, —2R, d B &)+ hochcy -
n,s OL,k
H,=H,+H,,. = —2ZRW (B G0-E ().
&, =x) +0, (4, ~p<l) (39)

Here X, is a radius-vector operator of the s -th particle in the n-th cell of a lattice, x| is
an equilibrium position of this particle, i is a parameter determining the smallness of

particle displacements 1, . The summand H,, B H, means the Hamilton operator of

ns
free photons; the contribution H, describes phonon interaction and can be expanded in
a series in |L powers
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oo = S0ty ~ 1. =AY+ A+ 000, o)
rq
E(x) in (39) stands for the operator of transversal electric field

mm=2[
ok

2nw,h

172
j (e, (K)cy ™™ +he.}, (41)

ﬁnsl are Dicke operators, d; is a dipole moment of the noted particle in the lattice cell.
Displacement operators in standard notations are expressed by the formula
i, = ZL{e (Q)a, ™ +he.) (42)
nsl - (2ms(l)qu)l/2 Asl Aq

(see, e.g., [10]). Note that our idea of taking into account emitter oscillations in the lattice
is close to the approach proposed in [11] for the theory of ferromagnets. In the theory of
the emitter system the same approach was discussed in [12].

We assume phonon subsystem to be equilibrium with the Gibbs SO

Q

m 7HNZ

— T, —
W =€ ’ Spm Wn =1.

With taking into account displacement smallness, the interaction operator H s DAs
the structure of interaction (13), which is expected in the general theory developed by us

7 —=N'¢8 G PSS 3
Hms - Z SnstWnst + Z Sustt’ WpstWnst? + O(H ) ’ (43)
ns ns
where denoted
2 g OB (x) . B ()
$ = A7 Q — 1\ X,

Snsl] - _2Rnsx sl a—gm ’ Snslll2 - _Rnsxdsl ﬁ . (44)

X’lfll anl1 an[2

Given the accuracy of the kinetic equation (22) we should put in it
N PO~ (O e 05 P (V)

Z S;m; —> Z (snslunsl + Spst st )+ Z Spsir WpstWnsrr

i ns

7
ns,n’s

R 0 © 0)
Ai - Z J. dt Sn's’l'(T)un’s'l’ (T)[unsl —UW,y ] ’

7
ns —oo

~ 9 —0 (0)
Bi - Z J. drsn’s'l'(’r)[unsl —Uy ]un's’l’(T) ’
n'’s" oo (45)

—— () ~ e .
where A, ! =Sp,, WA, means the contribution of the n-th order in p to the average
Am =Sp,, wmAm. Averages are calculated by dint of the thermodynamic theory of

perturbations and Wick-Bloch-de Dominicis theorem [3]. We should take into account
phonon interaction structure defined by the contribution of the first order describing

three-photon processes. The contributions to the operator H ,(nl) have the form
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n 1
H;(nl) =W§{q’1(12’3)af@a3 +h'c'}28q1+qz—%bp e (46)
P

where conventional reduced notations of the type a;, =a,, are used (see, e.g., [3]). On

q;
this basis we have

(0)

— ) _ 3
= =Wars

snl

@ _

0 > U, Uy, W, W,

) 47)

~ A~ ’ * ’ ’
usn[ (T)us'n'l' = gs[,s'[' (I’l -n, T) ( gs[,s'['(n -n, T) = gs'[',s[ (l’l —-n, _T) )
where functions u,, w, , g, (n—n’,1) are introduced; they are determined by the

thermodynamic theory of perturbations and not presented here. As a result, the kinetic
equation (25) for the SO p(#) of a system containing emitters and photons in equilibrium

phonon environment takes the form

0p _ i peir 1 A ~y
. =—IH Pl —3 Snsi» Ans _Ans
o = H ] hz%[ 1PA = APl 48)
where denoted
. . . 0
H:ff = Hs + Z (‘g‘\nslusl + 3:nsll"/vsll') ’ Ansl = Z j dt 3:n's'l' (T)gs'l',sl (I’l/ -n, T) : (49)

Formulas (44) and (49) show that equilibrium phonon medium modifies the interaction
between emitters and photons, implementing effective electric field that acts on the s -th
particle in the lattice cell

oE(x) A 9%E(x)

E X ZE X)+ u, g7
s( ) ( ) aX[ sl Zaxlaxl, War

(50)

Formulas (45) indicate that the effective interaction (49) is a self-consistent field effect.
The second term in the kinetic equation (48) gives some renormalization of the emitter-
photon interaction too but also a dissipative contribution to the dynamics of the system.

6. Conclusions

In our paper a kinetic equation for a fully described quantum system placed into
equilibrium environment is derived. Its right side is found in the approximation of the
weak interaction between the system and medium and is calculated with accuracy to
second-order contributions, inclusively. The case of a separable interaction between the
system and medium is studied in detail; such interaction is implemented in most cases.
For example, the spin-phonon interaction in solids has such a structure since particle
oscillations in the lattice are small (we mean the nonlinear in displacements effects).

The paper is based on the Bogolyubov method of reduced description. It allows
parsing the question of transition in the equations for the parameters of the reduced
description to long times in the only way; in the literature it is done with additional
assumptions (see examples in [1, 2, 8, 12]). In addition, the reduced description method
leads to Markov kinetic equations. This is natural in problems of kinetics of a fully
described system in the environment that is independent of time, since non-locality of
kinetic equations in time emerges due to narrowing the list of system parameters.
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The developed general theory is applied to the kinetics of a free point particle in a
dense medium consisting of identical point particles. The potential interaction between
the particle and the environment is considered to be small. The derived kinetic equation is
written in terms of the Wigner distribution function of the particle. It accurately accounts
for the effects of non-locality associated with the influence of spatial nonuniformity of the
system on collisions.

The theory is applied for studying the impact of the motion of emitters (two-level
atoms) on their interaction with photons. The situation in a crystalline solid is
investigated under the assumption of weak interaction between emitters and phonons that
describe their motion. Interaction weakness is associated with smallness of emitter
oscillations. The consistent theory that takes into account effects of many-phonon
processes is built. In particular, in the examined approximation three-phonon processes
are considered. It is proved that emitter motion leads to renormalization of the interaction
between emitters and photons.
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