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CRITICAL PROPERTIES OF 2-DIMENSIONAL FERROMAGNET MODELS

In the paper it is shown by an example of heat capacity and, correspondingly, the thermic
coefficient of stability for a magnetic system, that the lowest order of non-zero at the critical point
derivative of a thermodynamic force with respect to the thermodynamic coordinate, according to the
stability requirements, is odd. Thermodynamic properties of the 2-dimensional Potts model and the 3-
spin model, valid for describing of the critical behavior of ferromagnetic systems with strong horizontal
and weak vertical bonds, are studied. The whole set of thermodynamic characteristics of stability is
calculated for these models, and varying of the critical behavior type with values of critical exponents
of the thermodynamic quantities is studied. It is shown that in these 2-dimensional exactly solvable
models both analytic and non-analytic behavior of heat capacity in the vicinity of the critical point is
possible. It is shown, that the critical exponents of heat capacity for the 3-spin model and the Potts

model for =4 are wholly corresponded to the conditions of thermodynamic stability and the first

non-zero derivative at the critical point is the third order entropy derivative of temperature.
Keywords: thermodynamic stability, critical state, heat capacity, coefficients of stability, critical
exponents.

Y paniii po0oTi Ha npuKIaai TeNJI0EMHOCTI if, BiAnoBinHO, TepMiuHOro KoedinieHTa crilikocTi
JJ151 MATHITHOI CHCTEMH MOKA3aHO, 10 MOXiTHOI HAWHMKYOro MOPSAAKY BiJl TepMOAMHAMIYHOI CHJIM 32
TepPMOJMHAMIYHOI0 KOOPAMHATO, BiIMiHHOIO Bil HYyJsl B KPUTHYHii Touwi, 3ritHO 3 BHUMoOramu
crifikocti, Oyae moXigHa HemapHOro mnopsiaky. JocuinxkyloTbess TepMoOAMHAMIYHI BJIaCTHBOCTI
aBosuMipHoi mogeni Ilorrca Ta TpucniHOBOI Mojelli, 32CTOCOBHHMX VIl ONUCY KPHTUYHOI NMOBEAIHKHU
(epoMarHiTHUX cHCTeM 3 CHJIbHUMH I'OPH30HTAJbHUMH i CIA0KMMHU BepPTHKAJILHUMH 3B’s3KkamMu. Jlis
HHUX PO3PaX0BAHO INOBHUN KOMILUIEKC TepMOAMHAMIYHHMX XapaKTePHCTHK CTIHKOCTI #H mocjifzkeHo
3a/IeXKHICTh THIy KPHTHYHOI MOBeAiHKH Bil 3HaYeHb KPHTUYHHX NOKA3HHUKIB TepPMOIMHAMIUHHMX
peauyuH. [TokazaHo, Mo 1151 HMX ABOBUMIPHHX TOYHO PO3B’SI3yBaHHMX Mojesell MOKJIMBA peanizauis
SIK AHAMITHYHOI, TaK i HeaHAJITMYHOI NOBeJiHKM TENMJIOEMHOCTI B OKOJi KPUTHYHOI TOYKH.
OOrpyHTOBAaHO, 10 KPUTHYHI MOKA3HUKH TEIJIOEMHOCTI /15 TpUcHiHOBOI Moaei i moaei IloTTea s

g =4 noBHicTIO BiINOBINAIOTE BUMOTaM TepMOAMHAMIYHOT cTiliKOCTI ii MepuIOI0 BiMINHOWO Bix HYJIs

B KPUTUYHIi Touli moxiaHoo Gyae MoXiiHa TPeTHOro NOPSIAKY Bill TeMIlepaTypH 32 eHTPOIII€I0.
KurouoBi ciioBa: TepmoanHamiuHa CTIHKICTh, KPUTUYHHUI CTaH, TEIUIOEMHICTh, KOS(DIL[i€HTH CTIHKOCTI,
KPUTHYHI TOKa3HUKH.

B nanHoli paGoTe Ha IpuMepe TeMJI0OEMKOCTH H, COOTBETCTBEHHO, TEPMHYECKOro KoddduinueHTa
YCTOMYMBOCTH /Il MArHUTHOH CHCTeMbl NOKAa3aHO, YTO INPOM3BOJAHONW HAMHMIKIIEr0 NOpPAAKAa OT
TepMOJAMHAMMYECKOH CHJIbI 10 TEPMOJUHAMHUYCCKONH KOOPAUHATE, OTIIMYHOH OT HYJIsl B KPUTHYECKOil
TOYKe, COIVIACHO TPeOOBAHUAM YCTOHYMBOCTH, OyAeT NPOM3BOJAHASA HedeTHOro nopsaaka. Uccaenywores
TepMOJAMHAMHMYECKHE CBOIicTBa ABYMepHOH mMoaenu Ilorrca m TpexcnMHOBOM MoJe/IH, NIPUMEHHMBbIX
JJ151 OMIMCAHUSI KPUTHYECKOro NoBeAeHHsl epPOMATHATHBIX CHCTEM C CHIILHBIMH FOPH30HTAILHBIMH U
c1a0bIMH BePTHKAJIBHBIMH CBA3AMH. /I HMX PacCYMTAH MOJHBIAH KOMILIEKC TePMOAMHAMHYECKHX
XapPAKTePUCTUK YCTOWYMBOCTH M HCCJIENI0BAHA 3aBHCHMOCTh THNA KPHUTHYECKOT0 TMOBeJeHUs] OT
3HAYEeHMIi KPUTHYECKHX MOKa3aTeseil TepMOAMHAMHYECKHX BeJHYUH. OO0OCHOBAHO, YTO AJs1 3THX
JBYMEPHBIX TOYHO PpellaeMbIX MoOJe/deil BO3MOKHA pealn3alusd M AHAIMTHYECKOro, U
HEAHATHTHYECKOI0 MOBEJCHUS TEIJIOEMKOCTH B OKPECTHOCTH KpuTHYeckoil Touku. Iloxaszano, 4To

KPHUTHYECKHEe MOKA3aTe]H TeNJI0eMKOCTH /Il TPeXCNHHOBOi Mojenn u mofeau Ilorrea aas (=4
MOJTHOCTBI0 COOTBETCTBYIOT YCJOBHSAIM TePMOJAMHAMUYECKOH YCTOWYMBOCTH M NEPBOi OTIMYHON OT
HyJIfl B KDHTHYECKOH TOYKe Oy/1eT MPOM3BOJAHASI TPETHEIr0 MOPSIKA OT TeMIIEPATYPHI 110 SHTPOIHH.

KiioueBble ci10Ba: TepMOJMHAMMYECKAs YCTOHYMBOCTb, KPHUTHYECKOE COCTOSIHHE, TCILIOEMKOCTB,
K03 HHUIHEHTHI yCTOHYMBOCTH, KPUTHUECKHE OKA3aTEIIH.
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1. Introduction

In a critical state the system is under extreme conditions — at the boundary of
thermodynamic stability. The maximum growth of fluctuations takes place, which causes
anomalies in behavior of thermodynamic quantities. One of the key tasks of critical state
thermodynamics is identification of these anomalies, i.e. determination of behavior of
thermodynamic parameters in the vicinity of critical points. There are several lines of
attack on this problem, namely statistical (model), asymptotic and thermodynamic one.

The thermodynamic approach to the problem of a critical state provides for solution
of the set task by thermodynamic method [1, 2], which considers the critical point as a
point combining both subcritical (heterogeneous) and supercritical (homogeneous) state
properties. In [1, 2] the problem of asymptotic behavior of thermodynamic parameters
near the critical points was solved in general terms. The existence of four alternative
types of behavior for thermodynamic quantities was ascertained. These types are
classified by the value of one of the adiabatic stability coefficients (the ASC’s) and by the
value of the critical slope K, of the phase equilibrium curve.

The most informative of the ASC’s is thermic coefficient of stability, related to heat
capacity of system, (aT/as)M =T/C,, . It can be explained, first of all, by the fact that

according to the first Gibbs lemma the heat capacity C,, is proportional to fluctuations of
energy, i.e. C,, determines the fluctuation level growth in the critical point. At the first
and the second type of critical behavior (9T/8S),, =const and the level of fluctuations is
low. At the third and the fourth type (6T/aS)M — 0 and fluctuations reach the large

values. The most “fluctuating” is the fourth type, where all the stability characteristics
tend to zero.

The analysis reveals that the first type corresponds to experimental data and to
models in the self-consistent field approximation. The second and the forth type of
critical behavior are intrinsic for ferromagnets and ferroelectrics [3, 4].

The exact solvable models of statistical physics and their applicability to describing
of real critical phenomena are always in supreme concern of scientists who deal with the
problem of phase transitions and critical state. This paper considers the study of the
critical properties for certain statistical models by applying the thermodynamic method of
investigation of critical states for one-component equilibrium systems [1, 2], based on the
introduction of the constructive definition of a critical state through the system of
homogeneous linear equations and concurrent examination of critical state stability
conditions.

2. The 3-spin model

Solving the 8-vertex model [5-7] has generated interest in models with multispin
interactions, especially in the model with interaction of three spins on a triangular lattice.
In such model every site i of the triangular lattice is occupied by spin o, taking the value

+1 or —1. The energy of a certain spin configuration is

&=-] Zcicjck (1)

where the summation is carried on over all the triangular sides of the lattice.

When calculating the free energy for the 3-spin model, it was noticed [6, 7] that
obtained results coincide exactly with those for a special case of the 8-vertex model, and
the 8-vertex model has four-fold symmetry of spin configurations. Taking advantages of
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Critical properties of 2-dimensional ferromagnet models

the properties obtained, R. Baxter found the transformation of the 3-spin model on the
triangular lattice into the 8-vertex model on the square lattice. As the free energy and the
spontaneous magnetization for the 3-spin model coincide with the relevant functions for
the 8-vertex model when the interaction parameter is u =3n/4, the critical exponents of

the model under consideration takes the values:

a=a=24, p=Y, y=74 8=15. ©)

From these data, the asymptotic behavior of basic stability characteristics was
analyzed. When approaching the critical point, all the thermodynamic parameters tend to
zero, moreover, the quantities (0H/oM ), and (6H/06M ). (the reciprocal adiabatic and

isothermic susceptibilities) vanish faster than the others. As y > a, the value of the critical
slope is K, =0. This corresponds to the fourth type of critical behavior, which is peculiar
for ferromagnets and ferroelectrics. Also, this is particular case of the results obtained in [4]

1 . . .
for the range g< u< % But the special attention attracts the fact, that the 3-spin model

satisfies the conditions of the critical state absolutely.
The analytic structure of the thermodynamic method [1, 2] is defined by the expansion
of the internal energy (its magnetic part) U(S,M) in series in entropy S and

magnetization M in the vicinity of the critical point. It was shown [1, 2], that according to

stability conditions of the critical state 5°U >0 under Z%B“U (6'S,8'M) >0, the lowest
n2 M

non-zero (and non-equal to infinity) derivative of a thermodynamic force with respect to the
generalized thermodynamic coordinate (an external parameter of the system) is an odd
order derivative. For example, for S -derivative of T (in the case of constant magnetization

M ) such derivatives may be (9T/28),. (6°T/ 883)M cor (o°T/ 885) , .... Let us denote
the order of that derivative n. Consider an asymptotic behavior of these quantities. Assume
(671/es),, =a = (0,0} and (¢*T/aS*), =0 for k <n . This implies [T ~T,|~a$ - S,
in the vicinity of the critical point when M =M, =0. Therefore, (65/aT),, ~ t/"*/an,
17=|T —Tc|. Hence, the sequence of such derivatives corresponds to the sequence of the
critical exponents:

N=135,.. 50 o a=0 2% 071 4 3)
3 5 n
For the derivatives (aT/aS),,(0°T/6s%),,....(6"T/as"),,.... the corresponding
exponent is a known critical index of heat capacity a. When n=3,5,7,... the divergent
heat capacity C,, with the fractional values of exponent o takes place. For the 3-spin

model a=2/3, and this implies, that the lowest non-zero derivative is the third order

derivative (83T / 883)M . The analogous analysis can be carried out for the other adiabatic

parameters also.

It is known that in the renormalization group theory the true values of the critical
exponents are obtained by the perturbative approach method in small parameter ¢ =4-d
[8], accounting for the first terms of the ¢ -expansion. In this case an efficient assumption
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concerning the fractal spatial dimension d takes place. In case under study the perturbation
theory leads to the idea of the fractal orders of the derivatives n (Fig. 1) and the small
parameters ¢ =n-—n, where n, is the nearest to n integer odd number. At this the critical

indices are given by expression (n—1)/n. E.g., for (3T/8S),, near n, =1, when 6=1/7,
one obtains o =1/8, which corresponds to the 3-dimensional Ising model [9].

1.0
0.8
0.6¢
]

0.4+

0.2+

0.0

2 4 6 8 10 12
n

Fig. 1. The order of the ASC’s derivative plot of the critical exponent for heat capacity.

3. The 2-dimensional Potts model

Another model, that is of certain interest from viewpoint of the thermodynamic stability
requirements, is the Potts model [6, 10, 11]. It is a generalization of the 2-dimensional Ising
model [6, 9]. The model is not solved exactly, but it can be presented as a vertex model with
the antiparallel order and its critical behavior was investigated well enough.

The Potts model can be formulated for any graph, i.e. for an arbitrary set of vertices
(sites) and edges (lines), which join pairs of vertices. Every vertex is associated with a
certain parameter o; which can take on q values (suppose, 1,2,...,q). The peculiarity of

this model is that q effects on the type of the phase transition. When q >4 the phase
transition is of the first kind (with latent heat of transition), and it is continuous if q<4.

The latter is just the matter of our consideration.
When q =1, the values of the critical exponents are equal to

a=-%, p=%q v=1%3 5=15 4)

At g =2 the Potts model becomes the Ising one and the critical exponents are

a=o,3=}/,y=74,5:15 (5)

When q=3,

=15 B=Jg. v=13. 5=14, (6)

and critical indices coincide with those of the hard hexagon model [6].
At g=4
a=24, B=1, v=4, 5=15, (7)
that overlaps with the results for the 3-spin model discussed above (indices a and B).
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Critical properties of 2-dimensional ferromagnet models

R. Baxter showed simple dependence of critical exponents of the Potts model on the
interaction parameter (like the 8-vertex model) [6], to be more precise, on y=2u/x:

1+y 15-16y + y? 15 -8y + y?
= = ,8: 1_y2 .

_2-4y B

_ , , 8
TRy T 12(1-y) ®

At q=12,3,4 the parameter y consequently takes the values %%%0 So, as in the

Baxter model, in the Potts one the violation of the universality hypothesis takes place [4].
The analysis of behavior of the ASC’s for the Potts model (Fig. 2) enables to
ascertain, that at g =1 the stability coefficients asymptotically behave as:

(ﬂ) - (_t)—2/3, (ﬁ] - (_t)19/18 .
0S Jy oM )

where t = (T -T, )/TC ; 1.e. the second type of critical behavior with the slope of the phase
equilibrium curve at the critical point K, =0 is realized. The energy fluctuations in this

case are tempered and fluctuations of the magnetic orientation are large.
If g=2, then a=0 (logarithmic divergence) and y=7/4 leads to the fourth type

of critical behavior with the critical slope K, =o. The energy and magnetic orientation
fluctuations are extremely large. At q =3 the ASC’s are given by

ary s (OHY) s
[aSJM 0 (OMJS A

and the fourth type of critical behavior with K, =0 is realized.

(@1/d5)y/C (al‘lf’g}?l\'l)sff
5 :

4] q=2 4

(@ (b)
Fig. 2. Temperature-dependence plot of thermic (a) and magnetic (b) ASC’s for the Potts model.

In this model the case q =4 is of peculiar interest:

oY s (OHY) 43
(as)M 0™ (aMl, 0™

Here the fourth type of critical behavior with K, =0 takes place as well, but this case
satisfies the stability conditions completely and we have the same situation as in the 3-spin
model: the lowest non-zero derivative is the third order derivative (83T / 883)M :
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However, considered models are not the only models, obeying the condition (3). Thus,
the value of critical exponent o, =0 corresponds to the classical models, the Lieb model
when T <T_, the Potts model at q =2, the Baxter and Ashkin — Teller models at p =m/2

[6]. The other possibilities are considered before, while studying the critical behavior of 2-
dimensional models [3, 4]. For example, a.=2/3 corresponds, together with the 3-spin

model and the Potts one at q=4, also to the Baxter model when p=3=n/4 and to the
Ashkin — Teller one at p=0. The value o=4/5 corresponds to the Baxter model at
w=5xn/6. The limit value of critical exponent o =1 corresponds to the 6-vertex Lieb when
T >T,, which is the threshold case of the Baxter model at p=m.

4, Conclusions

The performed analysis enables us to conclude, that according to the conditions of
thermodynamic stability of the critical state both analytic and non-analytic behavior of
heat capacity is possible and both of these cases take place. In the models considered (the
3-spin model, the Potts model) the second and the fourth types of critical behavior are
possible, which are peculiar for ferromagnets, as it was shown before [1-4], and which
differ in the level of fluctuation growth of the energy and magnetization. This is in good
agreement with experimental data.
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