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SPONTANEOUS SYMMETRY BREAKING IN THE O(4) SCALAR MODEL ON
A LATTICE

In the present paper we investigate the spontaneous symmetry breaking in the four-component
scalar 1¢"* model on a lattice (the O(4) model) for the wide interval of coupling constant values. We
consider the case of zero temperature and the four-dimensional space-time. The massless Goldstone
components of the scalar field are integrated out in the spherical coordinates in the internal space of
the scalar field by the saddle point method, and the initial functional integral of the model is reduced to
an effective one-component theory with massive radial component convenient for lattice investigations.
The model is expressed in terms of dimensionless parameters suitable for varying coupling constant
and rescaling of the lattice space and the mass. Monte Carlo simulations are performed with the
QCDGPU software package on a HGPU cluster. It is shown that the symmetry is spontaneously broken
for coupling values 4>, ~ 10°°. For smaller coupling values, the scalar field vanishes on a lattice, which
can be interpreted as instability of the homogeneous condensate or even instability of the model itself.
The critical value of coupling A, is independent of the lattice sizes for investigated lattices 16* and 32*.

Keywords: scalar model, Monte Carlo simulations, spontaneous symmetry breaking.

Y poGoTi J0CHiIKY€TBCH CIOHTAHHE MOPYIIECHHSA CHUMETPIi B Y4OTHPbOXKOMIIOHEHTHIl CKaNAPHii
/1(04 moneni Ha rparui (O(4) mogeni) B mmpokoMmy iHTepBasli 3HayeHb KOHCTAHTH B3a€EMOMIN.
PosrasgaeTbess BHIAAOK HYJIbOBOI TeMIIEPATYpH Ta YOTHPHBUMIPHOro mpocropy-dacy. besmacosi
KOMIIOHeHTH ['0/11cTOyHAa CKaJAPHOIO TMOJiSl TPOIHTerpoBaHo Yy c(epuYHMX KOOpPAWHATAX Yy
BHYTPilIHLOMY NPOCTOPi CKAJSIPHOTO TMOJISI 3a /ONMOMOIOI0 MeTOAy HepeBady, a MNOYATKOBHIi
(yHkuioHaabHUl iHTErpaj Moaenai npuBeeHo 10 e(h)eKTHBHOI 0ITHOKOMIIOHEHTHOI Teopil 3 MacCHBHOIO
pafialbHOI0 KOMIIOHEHTOI0, SIKA € 3PYYHOI0 JJIf AOCTilKeHb Ha rpaTui. Momeab NpeacTaBJeHO B
TepMiHax 0e3po3MipHUX MapaMeTpiB, NPUIATHUX /1 3MiHH 3HA4YeHb KOHCTAHTH B3a€MOJii, MaciITady
rpatku Ta Macu. Ilposeneno cumynsuii Monte Kapuo Ha kuaacrepi HGPU 3a nomomororo
nporpamuoro 3aéesnedennss QCDGPU. IlokazaHo, m0 cHMeTPifi € CIIOHTAHHO NOPYLICHOK IpH
3HAYEHHSIX KOHCTAHTH B3aeMofii A > Ay ~ 10, [l MeHIINX 3HAYEHh KOHCTAHTH B32EMOIi CKaIsIpHe
1oJie Ha IPaTUi 3HUKAE, 110 MOKHA MOSCHUTHU SIK HecTa0lIbHiCTh OIHOPIIHOr0 KOHAEHcaTy 200 HABITh
HecTalibHicTs camoi Monesti. KpuTHuHe 3HAYEHHS B3aeMofii Ao He 3a/1eXuTh Bil po3mipy rpatox 16*
Ta 324, mo JOCJIIZKYBATHCH.

Kurouosi ciioBa: ckansipaa Mozens, cumyJsnii Moute Kapiio, cioHTaHHe MOpyIIEHHS CHMETPii.

B paGoTe nccienyercsi CHOHTAHHOE HApYyIeHHEe CHMMETPHH B YeThIPEXKOMIIOHEHTHOH CKAJISIPHOI
/1¢4 Mojesu Ha pemierke (O(4) Mojesn) B IIUPOKOM HMHTEPBAJIe 3HAYCHUI KOHCTAHTHI B3aMMO/EHCTBHS.
PaccmaTpuBaercss ciaydail HyJeBoii TemmepaTrypbl W 4eTbIpEXMEPHOIO0 MpPOCTPAHCTBA-BPeMEHH.
Be3maccoBbie koMmoHeHThI I'01CTOyHa CKaJISIpHOrO MOJsi NPOMHTEIPUPOBAHBI B cepruyecknx
KOOPAMHATAX BO BHYTPEHHeM INPOCTPAHCTBE CKAJISIPHOIO MOJIsi MPH NMOMOLIM MeToAa Nepesaja, a
HCXO/HBI (PYHKIMOHAJIbHBINA HHTErpaj Mojeld NpuBeieH K 3p¢eKTHBHOI 0JHOKOMIIOHEHTHOIH TeopHuH
¢ MACCHBHOH paJua/IbHONH KOMIIOHEHTOMH, KOTOpas ymo0Ha /ISl MCCJeI0BaHMil Ha pemerke. Moaeab
NpeJcTaBjIeHa 4epe3 Oe3pasMepHble NapaMeTpPbl, NPUrOAHbIC /s HM3MEHEHUH 3HAYEHUH KOHCTAHTBI
B3auMoJeiicTBus, MacmTabda pemerku U maccol. IlpoBenennt cumyiasuun Monte Kapino Ha kiaacrepe
HGPU npu nomomu nporpammuoro obecneueHuss QCDGPU. Iloka3aHo, 4T0 cHMMeTpHsl CIIOHTAHHO
HADYIIEHA TpPH 3HAYEHHSX KOHCTAHTHI B3ammonxeiicteus A > Ay ~ 10°. Jlas membumux 3uagemumii
KOHCTAHTBHI B3aHMOJICHiCTBHSI CKAJIsIpHOe TM0Jile HAa pellleTKe Hc4Ye3aeT, 4YTO MOXKHO OOBSICHHUTH
HeCcTa0MJIBbHOCTBIO OJHOPOJHOIO0 KOHACHCATA WM AaKe HecTa0WJIbHOCTBIO camoii Moxenn. Kpurtnyeckoe
3HAYeHHe B3aUMO/IeliCTBHS Ay He 3aBHCHT OT pa3Mepa pelieTox 16* u 327, KOTOpbI€ HCCI1eJ0BAINCH.

KnroueBsble coBa: ckamsipHas MoJenb, cuMysinui Monre Kapro, cioHTaHHOE HapylIeHHe
CHMMETPHH.
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1. Introduction

Symmetry breaking and phase transitions in the O(N) scalar models are the problems
of great importance in quantum field theory. They are investigated in numerous
publications for different number of components N and different space-time dimensions
d = 2, 3, 4 by using various methods of calculations, in particular, Monte Carlo (MC)
simulations on a lattice [1-3]. In what follows, we fix the space-time dimensionality d = 4
and consider the models at zero temperature (symmetric lattices). The numbers of
components N = 1 and N > 1 correspond to qualitatively different physics related with
spontaneous breaking of discrete and continuous symmetry. The choice N = 4 has
relevance to either the One-Higgs-Doublet standard model of particles or low energy
limits of QCD and its phase structure at finite temperature.

Recently, it was discovered in MC simulations for the O(1), d = 4 model that the
type of the phase transition at finite temperature depends on the value of coupling
constant A [4]. This phenomenon had not been discussed in the literature before. Usually,
the coupling is assumed to be small and has the order 0.01 — 0.1, whereas the type of the
phase transition changes at much lower values of the coupling. Naturally, this problem is
of interest for other O(N) models. However, for N> 2 computations become much more
complicated in comparison with the one-component model.

In the present paper, we investigate spontaneous symmetry breaking (SSB) in the
O(4) model on a lattice at zero temperature and its dependence on the value of A. The first
main problem is a correct treatment of the Goldstone modes. These modes are related
with spontaneous breaking of continuous internal symmetries. So, it is impossible to
realize them on a lattice exactly, only some remnants can be observed. The second
problem is to work out a procedure for MC simulations which can be efficient for an
extremely wide interval of coupling values. To clarify the first problem, we consider the
behavior of the partition function (PF) in the continuous theory in case when the
homogeneous condensate of scalar field forms the background for quantum fluctuations.
We develop a general approach for solving this problem by using the representation of
the PF in spherical coordinates in the internal space of scalar fields. The main idea is to
integrate out the continuous angular modes, which become Goldstone bosons after
symmetry breaking, before lattice investigations. To solve the second problem, we
introduce special dimensionless variables.

The integration over angular Goldstone's modes is carried out by saddle-point
integration in the spherical coordinates and the effective potential for the radial (Higgs's)
field derived. With this effective action, either symmetry breaking or its dependence on A4
value are investigated in the way similar to the O(1) case [4]. We perform the MC
simulations for the radial field and investigate how the SSB depends on the value of
coupling 4. We discuss the results obtained and prospects for future studies.

2. The scalar model in spherical coordinates
The Lagrangian of the model reads

10p op m? 5, A 4
L=—"2%% _v(p), Vip)=——p*+~
20x, o, (@) Vie) A4 (1)

.....
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Let us parameterize the scalar field in the spherical coordinates as ¢,(x)= R(x)n,(x),
where n; is a unit vector in the internal space. The direction n; contains angular variables
describing a point on the four-dimensional sphere,

n,=sing;sind,sind,, n,=sind,sind,cosd;, n,=sing cosd,, n,=cosé,. )
In these variables, the Lagrangian (1) has the form

2
Lzléiéi+& on;_on; -V(R).
20x, 0X, 2 50X, 0X,

®3)

The Euler-Lagrange equations of the model have the constant solution R, = m/ﬁ,
n; =const called the classical condensate. In the vicinity of this solution, fluctuations of
n; describe massless particles corresponding to the Goldstone modes appearing after
symmetry breaking, whereas fluctuations of R correspond to massive particles.

When the Cartesian coordinates are used in the internal space, the functional
integrals in the model are of the Gaussian type for free particles. In the spherical
coordinates, the Jacobian appears as an additional factor in the integrand. This requires

developing a procedure for calculating such integrals.
The PF of the model in terms of spherical coordinates in the internal space reads

Z = [Dpexpl[d*x L)= [ RDR()[d°(x)exp([d*x L, (@)

where d3§2(x) represents the integration over angular variables in the internal space.
We assume a lattice in the Euclidian space-time with the spacing a. The field R(x) is
determined by its values in each site x of the lattice. In what follows, we consider zero
temperature and use symmetric lattices.

We consider the classical condensate as the background for quantum fluctuations
and calculate the corresponding PF. A usual procedure in this case is to calculate the
effective potential V(¢,) and apply the saddle-point method. For constant fields, the
equations to find the stationary point are simplified significantly, and the integration in
the functional integral can be easily fulfilled.

The PF can be written in the form

z =TT [ DR(x)[ d°Ca(x)exp(3log R(x)+ a*L(x)) 5)
The “effective potential” for this case is

V(R)=Y a"V (R(x)) - >_3logR(x). (6)

In fact, this is not a usual effective potential obtained by the Legendre
transformation but a useful tool for calculation by the saddle-point method. The
stationary equation, oV (R)/aR = 0, has one real solution

2
m 124
RE=—/|1+ |1+ : 7
0 2/1( m“a“J 0
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For small 4, it can be written as RZ =m?4™ +3m~a™ . The effective potential in the
vicinity of RZ equals to

TR)=V(R) 5[ 22+ 2 RO -RF .. ©

Our next step is to calculate the PF in the spherical coordinates in some way. The
goal is to take into consideration the contributions of the continuous Goldstone modes
analytically. After that, the radial field R(x) remains the only dynamical variable. In this
way we obtain an effective theory convenient for further lattice investigations. In what
follows, we will use the saddle-point approach for integration. Its leading approximation
accounts for the non-analytic correlations existing between the parameters of the
problem. Remaining contributions can be calculated in perturbation theory.

3. Saddle-point integration in the spherical coordinates

Now, we carry out angular integration in the internal space of the model. The
functions n, are given in (2). For the second term in (3) we get

2 2 2
R2|( 06, 00, . 00. . )
L(@)="——|| =2 | +| =22 | sin?@, +| —2 | sin®@ sin’ o
@)= [axﬂ] [axj A [axl ;sin” 0, 9)

u u

and the Jacobian reads J(6,)= R%sin? 6, sin 4, .

To calculate the PF, we construct the “effective potential” (6), determine the
stationary point for the fixed direction R=R,, 6 =6, and write the integration
variables as R(x)=R, + p(x), 6(x)=6 +n,(x), where i = 1,2,3. After that, we can
integrate over angular variables 7, (x) by using the saddle-point method.

Substituting the angles in (9) and in the Jacobian by means of
sin,(x) = sin 8 + cos 67, (x) + O(nf), we expand them in series over 77;(x). In the
given approximation, the angular term (9) becomes

RS 0 2 5(0) 0 2 1(0) i n2 1(0) 0*
R ) . .
L(Qi)_—7 771@7714—5"1 ) 772@772+sm 6% sin? 6§ 7738731773 F... (10)

where we omit interaction terms with three and more fields. Then, we can extend the
integration limits for Ui(X) to plus-minus infinities and make the change of variables:
r,=Rya’n, 1, =R,a’n,sind®, r,=R,a’n,sind sin ") . After these transformations,
we obtain the PF measure (4):
3\ 2 . R3(x)
R¥(x)sin® 6,(x)sin 6,(x)DR D6, D@, D6, =WD,0 Dr, Dr, Dr, (11)
a
0
and the angular exponential contains —(1/2)2i r; az/axin . Due to the symmetry of the
integration limits, the linear in Ui(X) terms do not contribute to the result. Thus, we

obtain three integrals over the angular variables. These integrals are independent of any
physical variables and, after extending the limits of integration to infinities, result in some

8
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constant factor. This factor does not influence the PF behavior in the limit 4 — 0.
Another property of (11) is independence of the r.h.s. of the arbitrary saddle point

parameters 0®. The dependence is cancelled, as it is expected. Hence, we conclude that

the SSB of continuous symmetry can be completely related with the radial variable R(x).
After angular integrations, we can integrate over the radial field p.

The factor R3(x)/R? in (11) can be transformed to the extra term in the “effective

action” (6) for the one-component field R(x). This observation gives a possibility for
formulating a general procedure for investigations of SSB in the O(N) models. Namely,
we can start with the effective one-component Lagrangian consisting of the initial one
written in the spherical coordinates where we can omit the angular terms and add the term

log(R(x)/R,)" . The value of the saddle point R, has to be calculated from the
“effective potential” \7(R) for fixed angular variables. The procedure of dealing with the
one component field R(x) can be simply realized on lattices similarly to the O(1) case [4].

4, Monte Carlo lattice simulations

The phase with the broken symmetry in the O(N) model at zero temperature on a
lattice can be described by the Euclidian effective one-component Lagrangian consisting

of the radial part of the initial action and the additional term log(R/R,)"™ from the
Jacobian and integrated angular part:

2
S = a“(laRaR—mR2+ZR4j—Zlog(R/RO)N1 (12)

where a is the lattice spacing, and the value R, is calculated from the “effective
potential” \7(R) for fixed angular variables. For MC simulations, we use a symmetric

hypercubic lattice with hypertorous geometry in the four-dimensional space-time.

The one-component non-negative scalar field R(x) is defined in lattice sites. As it is
known, symmetric d = 4 lattice corresponds to zero temperature, whereas finite
temperatures require a less number of sites in the temporal direction than in the spatial
directions.

Since we are interested in varying A in a wide interval of values, self-adjustment of
the lattice spacing and other parameters of the model is of great importance. In this
regard, we rewrite the action through dimensionless quantities. The classical condensate

value R, =m/~/A is set as a unit of field. Writing the radial field as

C

we obtain the lattice action (up to a constant)

1 1 [z D, ., N -1
S="No | b, -1+ |- log? X |- log ®
Z; [ » 4%; 90 J > 5109, (14)

X X

where the log-squared term encodes the Kinetic part of the action written through the
finite differences instead of derivatives, and z is a dimensionless parameter defined as
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A

7= .
m*a*

(15)

The effective model (12) is derived by integration of angular degrees around the
condensate direction. This means quantum fluctuations have to be not larger than the
values of the condensate. So, the values R >> R could be incompatible with the effective

model.  Fortunately, the probability of such large values decreases as
exp(—CDz/z)zexp(— R4/(42Rf)), R — 0, in accordance with (14). In this regard, the
interval of values of R appears to be actually finite and can be cut by some upper bound
Rmax. IN MC simulations, we use two values R, =3.75R; and R, =4R_ to show that

the results are independent of the cutoff scale. In the selected interval, R is taken to be
uniformly distributed in accordance to the definition of the partition function of the
effective theory. The chosen cuts correspond to probability < 10 (the choice of z is
described below), so the obtained Boltzmann ensembles demonstrate no essential
dependencies on Rax.

Parameter z is related to the saddle point position R, defined in (7),

2(Ry/R. Y =1+-/1+4(N -1)z . We use z~ 1 (z = 0.67 and z = 1, actually) corresponding

to saddle point position at the central part of the interval of field values, 1 < R¢/R, < 1.5.
Extremely small values of z could make the N-dependent term in the effective action
negligible with respect to other terms, whereas large z could move the saddle point
outside the cutoff scale.

In this paper we consider MC simulations at N = 4, only. Other possible values of N
we tried lead to similar results. All the calculations are performed with the double
precision. The system is thermalized by passing up to 10° MC iterations for every run.
For measuring, we use 10° MC configurations separated by 10 bulk updates. To exclude
lattice finite-size effects we perform simulations on lattices 16* and 32*. The full
correspondence of key results is obtained on these different lattices.

For MC simulations, we use the universal software environment QCDGPU [5] that
allows performing simulations for a number of frequently studied models. To produce
pseudo-random numbers in QCDGPU package we use our own library of pseudo-random
number generators for MC simulations PRNGCL [6].

All the simulations are performed on a heterogeneous distributed HGPU cluster [7].
It consists of different graphics processing units: AMD Radeon HD 7970, HD 6970, HD
5870, HD 5850, HD 4870, HD 4850, NVIDIA GeForce GTX 560 M, GTX 560 Ti.

The dependence of the averaged radial field R/R; on the coupling constant A at zero
temperature on the symmetric lattice 16* is shown in Fig. 1. Let us note that this quantity
is not the scalar condensate value (the order parameter). In fact, it accounts for the scalar
field coming from the classical condensate, quantum fluctuations and the part due to the
logarithm of the Jacobian. The latter part is independent of the sign of the mass squared.
In the case of classical condensate with no fluctuations, R/R. =1 independently of 4. As
we can see, R/R; is close to 1 for popular values of A > 10 the quantum correction to
this quantity is no more than 40%. However, R/R, goes to zero at extremely small
couplings. At 1 < A, ~ 107 it is of one order less than the classical condensate value. At
extremely small couplings the scalar field on a lattice exhibits tendency to be negligibly
small with respect to the value of classical condensate. This result contradicts the idea of
small quantum fluctuations over a strong homogeneous condensate used in our
calculations. The same value of 4, is also detected on the lattice 32* that demonstrates the

10
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stability of the results with respect to finite-volume effects. This dependence is not
expected at the classical level where the condensate of ¢ has the value | m|/-/4 .

R/Rc

QO(4) model
145 | a)A=3.76, 221 L+
+ -
12l - PYA=4.00,z=1 R
-+ ©) A=4.00, z= 125 .
1.0} .
08| M
+
06 L
R
04| L
L
H
02t i 8
N &
. s s 2" vt . . L
107 10° 0.001 0.1 Y

Fig. 1. Dependence of the mean radial field (in the classical condensate units) on the coupling constant A
at zero temperature on a lattice 16*.

We cannot interpret the decay of the homogeneous condensate on a lattice at 4 — 0
as some kind of symmetry restoration. First, there is no evident saddle point to integrate
the angular modes in spherical coordinates in the case of restored symmetry, so, the
restored phase is probably outside the scope of our effective model. Second, the classical
potential becomes unstable at A = 0. In this regard, we can assume the instability of the
homogeneous condensate or even instability of the O(N) model itself at A~ 10~

The change of the SSB at extremely low couplings reminds in some aspects another
phenomenon already found for continuous field theory by Linde [8] and Weinberg [9] in the
Higgs model and in the standard model, respectively. These authors observed that the SSB
does not happen for small values of the coupling 4 < A,. Although the critical value A,
depends on the mass value and gauge coupling value entering the Lagrangian, it is natural to
consider small couplings to reach the Linde-Weinberg low bound. Physically, the Linde-
Weinberg bound reflects the important property of the SSB — the existence of the parameter
ranges allowing the total effective potential to be dominated by the positive radiation quantum
effects instead of the negative classical part. Another example of degeneration of the SSB is
the scalar model at finite temperatures. Studying the phase transition in the O(1) model on a
lattice, we observed disappearance of the symmetry breaking at extremely small couplings
[4]. Although there is no direct correspondence between the scalar O(N) model at zero
temperature in the current paper and the mentioned examples of degeneration of the SSB,
these analogies reflect the general idea that the SSB in theories with scalar fields can change
its behavior at some extremal values of coupling A.

5. Conclusions

We have investigated the SSB phenomenon in the scalar O(4) model in the four-
dimensional space-time on a lattice and determined its dependence on the coupling
values. We have shown that symmetry breaking takes place for A > 4, = 10”. This is in
the course of common belief that the SSB of continuous internal symmetries is a realistic
mechanism for particle mass generation. It was experimentally grounded due to the recent
discovery of the Higgs boson.

11
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The main object introduced in the present paper is the effective Lagrangian for the
radial field obtained by means of integration over angular continuous variables in the
spherical coordinates in the internal space. The integration can be realized by the saddle-
point method. The effective Lagrangian is convenient for further lattice investigations.

The open-source software package QCDGPU was used for MC simulations on GPU.
We also propose the MC procedure for studying the dependence of the SSB phenomenon
on the coupling constant A values in the O(N) models. Within these facilities, we detected
that the scalar condensate has to disappear at extremely small values of coupling, 1 < 107
for the O(4) model. This is in correspondence with the results obtained for the O(1)
model [4], where the critical value is also 4, =~ 10”. For N > 1 this behavior means that
the SSB of continuous symmetries also depends on the value of coupling.

We would like to stress here that the dependence of the SSB on the coupling value is
a nonperturbative effect which cannot be expected beforehand. This also concerns
changing the kind of the temperature phase transition. In the literature on this problem,
most results have been obtained firstly in various perturbation schemes including
resummations series of Feynman diagrams. It was observed that the dependence on A
disappears at all and perturbation theory in this parameter becomes not reliable at the
critical temperature. So, other perturbation schemes (in particular, the expansion in 1/N
for large N) have been used. In such investigations the dependence on the A value was not
considered. The coupling was usually taken to be of order 4 =~ 0.01 — 0.1, and a second
order phase transition has been detected. Such a behavior is in agreement with our
analysis for O(1) model on a lattice [4] for these coupling values. The extremely small A
values were not considered at all.

In course of the results obtained, obvious problems for further studies are the A-
dependence of the SSB in the O(N) models for d = 1 - 3 and the temperature phase transition.

References

1. Zinn-Justin J. Quantum field theory and critical phenomena [Text] / J. Zinn-Justin // Int.
Ser. Monogr. Phys. — 1996. — 92. — Ne 1. — P. 1008.

2. Berges J. Nonperturbative renormalization flow in quantum field theory and statistical
physics [Text] / J. Berges, N. Tetradis and C. Wetterich // Phys. Rept. — 2002. — 363. — P. 223.

3. Marky G. Thermodynamics and phase transition of the O(N) model from the two-loop
Phi-derivable approximation [Text] / G. Marky, U. Reinosa and Z. Szep // Phys. Rev. D. — 2013. -
87.-105001.

4. Bordag M. The type of the phase transition and coupling values in A¢* model [Text] / M.
Bordag, V. Demchik, A. Gulov and V. Skalozub // Int. J. Mod. Phys. A. — 2012. — 27. — 1250116.

5. Demchik V. QCDGPU: Open-Source Package for Muti-GPU Monte Carlo Lattice
Simulations [Text] / V. Demchik and N. Kolomoyets // Computer Science and Applications. —
2014.-V.1.-N.1.-P. 13-21.

6. Demchik V. Pseudorandom numbers generation for Monte Carlo simulations on GPU’s:
OpenCL approach [Text] / Numerical Computations with GPU’s (ed. V. Kindratenko), Springer
2014, Ch. 12.

7. http://hgpu.org/.

8. Linde A. D. Dynamical Symmetry Restoration And Constraints On Masses And
Coupling Constants in Gauge Theories [Text] / A.D. Linde // JETP Lett. — 1976. — 23. — P. 64.

9. Weinberg S. Mass of the Higgs Boson [Text] / S. Weinberg // Phys. Rev. Lett. — 1976. —
36.—P. 294.

Received 23.06.2015.

12


http://hgpu.org/

