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SPONTANEOUS SYMMETRY BREAKING IN THE O(4) SCALAR MODEL ON 
A LATTICE 

In the present paper we investigate the spontaneous symmetry breaking in the four-component 
scalar λϕ4 model on a lattice (the O(4) model) for the wide interval of coupling constant values. We 
consider the case of zero temperature and the four-dimensional space-time. The massless Goldstone 
components of the scalar field are integrated out in the spherical coordinates in the internal space of 
the scalar field by the saddle point method, and the initial functional integral of the model is reduced to 
an effective one-component theory with massive radial component convenient for lattice investigations. 
The model is expressed in terms of dimensionless parameters suitable for varying coupling constant 
and rescaling of the lattice space and the mass. Monte Carlo simulations are performed with the 
QCDGPU software package on a HGPU cluster. It is shown that the symmetry is spontaneously broken 
for coupling values λ>λ0 ∼ 10-5. For smaller coupling values, the scalar field vanishes on a lattice, which 
can be interpreted as instability of the homogeneous condensate or even instability of the model itself. 
The critical value of coupling λ0 is independent of the lattice sizes for investigated lattices 164 and 324. 

Keywords: scalar model, Monte Carlo simulations, spontaneous symmetry breaking. 

У роботі досліджується спонтанне порушення симетрії в чотирьохкомпонентній скалярній 
λϕ4 моделі на ґратці (O(4) моделі) в широкому інтервалі значень константи взаємодії. 
Розглядається випадок нульової температури та чотиривимірного простору-часу. Безмасові 
компоненти Голдстоуна скалярного поля проінтегровано у сферичних координатах у 
внутрішньому просторі скалярного поля за допомогою методу перевалу, а початковий 
функціональний інтеграл моделі приведено до ефективної однокомпонентної теорії з масивною 
радіальною компонентою, яка є зручною для досліджень на ґратці. Модель представлено в 
термінах безрозмірних параметрів, придатних для зміни значень константи взаємодії, масштабу 
ґратки та маси. Проведено симуляції Монте Карло на кластері HGPU за допомогою 
програмного забезпечення QCDGPU. Показано, що симетрія є спонтанно порушеною при 
значеннях константи взаємодії λ > λ0 ∼ 10-5. Для менших значень константи взаємодії скалярне 
поле на ґратці зникає, що можна пояснити як нестабільність однорідного конденсату або навіть 
нестабільність самої моделі. Критичне значення взаємодії λ0 не залежить від розміру ґраток 164 
та 324, що досліджувалися. 

Ключові слова: скалярна модель, симуляції Монте Карло, спонтанне порушення симетрії. 

В работе исследуется спонтанное нарушение симметрии в четырехкомпонентной скалярной 
λϕ4 модели на решетке (O(4) модели) в широком интервале значений константы взаимодействия. 
Рассматривается случай нулевой температуры и четырехмерного пространства-времени. 
Безмассовые компоненты Голдстоуна скалярного поля проинтегрированы в сферических 
координатах во внутреннем пространстве скалярного поля при помощи метода перевала, а 
исходный функциональный интеграл модели приведен к эффективной однокомпонентной теории 
с массивной радиальной компонентой, которая удобна для исследований на решетке. Модель 
представлена через безразмерные параметры, пригодные для изменений значений константы 
взаимодействия, масштаба решетки и массы. Проведены симуляции Монте Карло на кластере 
HGPU при помощи программного обеспечения QCDGPU. Показано, что симметрия спонтанно 
нарушена при значениях константы взаимодействия λ > λ0 ∼ 10-5. Для меньших значений 
константы взаимодействия скалярное поле на решетке исчезает, что можно объяснить 
нестабильностью однородного конденсата или даже нестабильностью самой модели. Критическое 
значение взаимодействия λ0 не зависит от размера решеток 164 и 324, которые исследовались. 

Ключевые слова: скалярная модель, симуляции Монте Карло, спонтанное нарушение 
симметрии. 
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1. Introduction 
Symmetry breaking and phase transitions in the O(N) scalar models are the problems 

of great importance in quantum field theory. They are investigated in numerous 
publications for different number of components N and different space-time dimensions  
d = 2, 3, 4 by using various methods of calculations, in particular, Monte Carlo (MC) 
simulations on a lattice [1-3]. In what follows, we fix the space-time dimensionality d = 4 
and consider the models at zero temperature (symmetric lattices). The numbers of 
components N = 1 and N > 1 correspond to qualitatively different physics related with 
spontaneous breaking of discrete and continuous symmetry. The choice N = 4 has 
relevance to either the One-Higgs-Doublet standard model of particles or low energy 
limits of QCD and its phase structure at finite temperature. 

Recently, it was discovered in MC simulations for the O(1), d = 4 model that the 
type of the phase transition at finite temperature depends on the value of coupling 
constant λ [4]. This phenomenon had not been discussed in the literature before. Usually, 
the coupling is assumed to be small and has the order 0.01 – 0.1, whereas the type of the 
phase transition changes at much lower values of the coupling. Naturally, this problem is 
of interest for other O(N) models. However, for N≥ 2 computations become much more 
complicated in comparison with the one-component model. 

In the present paper, we investigate spontaneous symmetry breaking (SSB) in the 
O(4) model on a lattice at zero temperature and its dependence on the value of λ. The first 
main problem is a correct treatment of the Goldstone modes. These modes are related 
with spontaneous breaking of continuous internal symmetries. So, it is impossible to 
realize them on a lattice exactly, only some remnants can be observed. The second 
problem is to work out a procedure for MC simulations which can be efficient for an 
extremely wide interval of coupling values. To clarify the first problem, we consider the 
behavior of the partition function (PF) in the continuous theory in case when the 
homogeneous condensate of scalar field forms the background for quantum fluctuations. 
We develop a general approach for solving this problem by using the representation of 
the PF in spherical coordinates in the internal space of scalar fields. The main idea is to 
integrate out the continuous angular modes, which become Goldstone bosons after 
symmetry breaking, before lattice investigations. To solve the second problem, we 
introduce special dimensionless variables. 

The integration over angular Goldstone's modes is carried out by saddle-point 
integration in the spherical coordinates and the effective potential for the radial (Higgs's) 
field derived. With this effective action, either symmetry breaking or its dependence on λ 
value are investigated in the way similar to the O(1) case [4]. We perform the MC 
simulations for the radial field and investigate how the SSB depends on the value of 
coupling λ. We discuss the results obtained and prospects for future studies. 

2. The scalar model in spherical coordinates 
The Lagrangian of the model reads 
 

( ) ( ) 42
2
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,

2
1 ϕλϕϕϕϕϕ
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+−=−
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mVV
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L  (1) 
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= 4,...,1
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i iϕϕ . For 02 >m  the SSB potentially takes place. 
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Let us parameterize the scalar field in the spherical coordinates as ( ) ( ) ( )xnxRx ii =ϕ , 
where in  is a unit vector in the internal space. The direction in  contains angular variables 
describing a point on the four-dimensional sphere, 

1421332123211 cos,cossin,cossinsin,sinsinsin θθθθθθθθθ ==== nnnn . (2) 

In these variables, the Lagrangian (1) has the form 

( )RV
x
n

x
nR

x
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RL
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ii −
∂
∂

∂
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+
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∂
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= ∑
µµµµ 22
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. (3) 

The Euler-Lagrange equations of the model have the constant solution λmRc = , 

in  =const called the classical condensate. In the vicinity of this solution, fluctuations of 

in  describe massless particles corresponding to the Goldstone modes appearing after 
symmetry breaking, whereas fluctuations of R correspond to massive particles. 

When the Cartesian coordinates are used in the internal space, the functional 
integrals in the model are of the Gaussian type for free particles. In the spherical 
coordinates, the Jacobian appears as an additional factor in the integrand. This requires 
developing a procedure for calculating such integrals.  

The PF of the model in terms of spherical coordinates in the internal space reads 

( ) ( ) ( ) ( )∫∫∫∫ ∫ Ω==
∞

LxdxdxDRRLxdDZ 43
0

34 expexpϕ , (4) 

where ( )xd Ω3  represents the integration over angular variables in the internal space. 
We assume a lattice in the Euclidian space-time with the spacing a. The field R(x) is 
determined by its values in each site x of the lattice. In what follows, we consider zero 
temperature and use symmetric lattices. 

We consider the classical condensate as the background for quantum fluctuations 
and calculate the corresponding PF. A usual procedure in this case is to calculate the 
effective potential V( cϕ ) and apply the saddle-point method. For constant fields, the 
equations to find the stationary point are simplified significantly, and the integration in 
the functional integral can be easily fulfilled. 

The PF can be written in the form 

( ) ( ) ( ) ( )( )xLaxRxdxDRZ
x

43
0

log3exp +Ω= ∫∫Π ∞
 (5) 

The “effective potential” for this case is 

( ) ( )∑∑ −=
xx

xRxRVaRV log3))((~ 4 . (6) 

In fact, this is not a usual effective potential obtained by the Legendre 
transformation but a useful tool for calculation by the saddle-point method. The 
stationary equation, ( ) 0~ =∂∂ RRV , has one real solution 
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For small λ, it can be written as 42122
0 3 −−− += ammR λ . The effective potential in the 

vicinity of 2
0R  equals to 

( ) ( ) ( ) ...)(312
2
1~~ 2

04220 +−





 ++= RxR

amm
RVRV λ . (8) 

Our next step is to calculate the PF in the spherical coordinates in some way. The 
goal is to take into consideration the contributions of the continuous Goldstone modes 
analytically. After that, the radial field R(x) remains the only dynamical variable. In this 
way we obtain an effective theory convenient for further lattice investigations. In what 
follows, we will use the saddle-point approach for integration. Its leading approximation 
accounts for the non-analytic correlations existing between the parameters of the 
problem. Remaining contributions can be calculated in perturbation theory. 

3. Saddle-point integration in the spherical coordinates 
Now, we carry out angular integration in the internal space of the model. The 

functions in  are given in (2). For the second term in (3) we get 
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and the Jacobian reads ( ) 21
23 sinsin θθθ RJ i = . 

To calculate the PF, we construct the “effective potential” (6), determine the 
stationary point for the fixed direction 0RR = , )0(

ii θθ = , and write the integration 
variables as ( ) ( )xRxR ρ+= 0 , ( ) ( )xx iii ηθθ += )0( , where i = 1,2,3. After that, we can 
integrate over angular variables ( )xiη  by using the saddle-point method. 

Substituting the angles in (9) and in the Jacobian by means of 
( ) ( ) ( )2)0()0( cossinsin iiiii Oxx ηηθθθ ++= , we expand them in series over ( )xiη . In the 

given approximation, the angular term (9) becomes 
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where we omit interaction terms with three and more fields. Then, we can extend the 
integration limits for ( )xiη  to plus-minus infinities and make the change of variables: 

1
2

01 ηaRr = , )0(
12

2
02 sinθηaRr = , )0(

2
)0(

13
2

03 sinsin θθηaRr = . After these transformations, 
we obtain the PF measure (4):  

( ) ( ) ( ) ( )
32163

0

3

32121
23 sinsin DrDrDrD

aR
xRDDDDRxxxR ρθθθθθ =  (11) 

and the angular exponential contains ∑ ∂∂− i ii rxr 22)2/1( µ . Due to the symmetry of the 
integration limits, the linear in ( )xiη  terms do not contribute to the result. Thus, we 
obtain three integrals over the angular variables. These integrals are independent of any 
physical variables and, after extending the limits of integration to infinities, result in some 
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constant factor. This factor does not influence the PF behavior in the limit λ → 0. 
Another property of (11) is independence of the r.h.s. of the arbitrary saddle point 
parameters )0(

iθ . The dependence is cancelled, as it is expected. Hence, we conclude that 
the SSB of continuous symmetry can be completely related with the radial variable R(x). 
After angular integrations, we can integrate over the radial field ρ. 

The factor ( ) 3
0

3 RxR  in (11) can be transformed to the extra term in the “effective 
action” (6) for the one-component field R(x). This observation gives a possibility for 
formulating a general procedure for investigations of SSB in the O(N) models. Namely, 
we can start with the effective one-component Lagrangian consisting of the initial one 
written in the spherical coordinates where we can omit the angular terms and add the term 

( )( ) 1
0log −NRxR . The value of the saddle point 0R  has to be calculated from the 

“effective potential” ( )RV~  for fixed angular variables. The procedure of dealing with the 
one component field R(x) can be simply realized on lattices similarly to the O(1) case [4]. 

4. Monte Carlo lattice simulations 
The phase with the broken symmetry in the O(N) model at zero temperature on a 

lattice can be described by the Euclidian effective one-component Lagrangian consisting 
of the radial part of the initial action and the additional term ( ) 1

0/log −NRR  from the 
Jacobian and integrated angular part:  

( )∑∑ −−
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RaS 1

0
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2
4 /log

422
1 λ

µµ
 (12) 

where a is the lattice spacing, and the value 0R  is calculated from the “effective 
potential” ( )RV~  for fixed angular variables. For MC simulations, we use a symmetric 
hypercubic lattice with hypertorous geometry in the four-dimensional space-time. 

The one-component non-negative scalar field R(x) is defined in lattice sites. As it is 
known, symmetric d = 4 lattice corresponds to zero temperature, whereas finite 
temperatures require a less number of sites in the temporal direction than in the spatial 
directions. 

Since we are interested in varying λ in a wide interval of values, self-adjustment of 
the lattice spacing and other parameters of the model is of great importance. In this 
regard, we rewrite the action through dimensionless quantities. The classical condensate 
value λmRc =  is set as a unit of field. Writing the radial field as 

( )
x

cR
xR

Φ= 2 , (13) 

we obtain the lattice action (up to a constant)  

∑∑ ∑ Φ
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−
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4
111 ˆ2
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λ
 (14) 

where the log-squared term encodes the kinetic part of the action written through the 
finite differences instead of derivatives, and z is a dimensionless parameter defined as 
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44am
z λ
= . (15) 

The effective model (12) is derived by integration of angular degrees around the 
condensate direction. This means quantum fluctuations have to be not larger than the 
values of the condensate. So, the values cRR >>  could be incompatible with the effective 
model. Fortunately, the probability of such large values decreases as 

( ) ( ))4(expexp 442
czRRz −≈Φ− , ∞→R , in accordance with (14). In this regard, the 

interval of values of R appears to be actually finite and can be cut by some upper bound 
Rmax. In MC simulations, we use two values cRR 75.3max =  and cRR 4max =  to show that 
the results are independent of the cutoff scale. In the selected interval, R is taken to be 
uniformly distributed in accordance to the definition of the partition function of the 
effective theory. The chosen cuts correspond to probability < 10-22 (the choice of z is 
described below), so the obtained Boltzmann ensembles demonstrate no essential 
dependencies on Rmax. 

Parameter z is related to the saddle point position 0R  defined in (7), 
( ) zNRR c )1(411/2 2

0 −++= . We use z ≈ 1 (z = 0.67 and z = 1, actually) corresponding 
to saddle point position at the central part of the interval of field values, 1 < R0/Rc ≤ 1.5. 
Extremely small values of z could make the N-dependent term in the effective action 
negligible with respect to other terms, whereas large z could move the saddle point 
outside the cutoff scale. 

In this paper we consider MC simulations at N = 4, only. Other possible values of N 
we tried lead to similar results. All the calculations are performed with the double 
precision. The system is thermalized by passing up to 105 MC iterations for every run. 
For measuring, we use 103 MC configurations separated by 10 bulk updates. To exclude 
lattice finite-size effects we perform simulations on lattices 164 and 324. The full 
correspondence of key results is obtained on these different lattices. 

For MC simulations, we use the universal software environment QCDGPU [5] that 
allows performing simulations for a number of frequently studied models. To produce 
pseudo-random numbers in QCDGPU package we use our own library of pseudo-random 
number generators for MC simulations PRNGCL [6]. 

All the simulations are performed on a heterogeneous distributed HGPU cluster [7]. 
It consists of different graphics processing units: AMD Radeon HD 7970, HD 6970, HD 
5870, HD 5850, HD 4870, HD 4850, NVIDIA GeForce GTX 560 M, GTX 560 Ti. 

The dependence of the averaged radial field R/Rc on the coupling constant λ at zero 
temperature on the symmetric lattice 164 is shown in Fig. 1. Let us note that this quantity 
is not the scalar condensate value (the order parameter). In fact, it accounts for the scalar 
field coming from the classical condensate, quantum fluctuations and the part due to the 
logarithm of the Jacobian. The latter part is independent of the sign of the mass squared. 
In the case of classical condensate with no fluctuations, R/Rc =1 independently of λ. As 
we can see, R/Rc is close to 1 for popular values of λ ≥ 10-2, the quantum correction to 
this quantity is no more than 40%. However, R/Rc goes to zero at extremely small 
couplings. At λ < λ0 ≈ 10-5 it is of one order less than the classical condensate value. At 
extremely small couplings the scalar field on a lattice exhibits tendency to be negligibly 
small with respect to the value of classical condensate. This result contradicts the idea of 
small quantum fluctuations over a strong homogeneous condensate used in our 
calculations. The same value of λ0 is also detected on the lattice 324 that demonstrates the 
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stability of the results with respect to finite-volume effects. This dependence is not 
expected at the classical level where the condensate of ϕ has the value . 

We cannot interpret the decay of the homogeneous condensate on a lattice at λ → 0 
as some kind of symmetry restoration. First, there is no evident saddle point to integrate 
the angular modes in spherical coordinates in the case of restored symmetry, so, the 
restored phase is probably outside the scope of our effective model. Second, the classical 
potential becomes unstable at λ = 0. In this regard, we can assume the instability of the 
homogeneous condensate or even instability of the O(N) model itself at λ ≈ 10-5. 

The change of the SSB at extremely low couplings reminds in some aspects another 
phenomenon already found for continuous field theory by Linde [8] and Weinberg [9] in the 
Higgs model and in the standard model, respectively. These authors observed that the SSB 
does not happen for small values of the coupling λ < λ0. Although the critical value λ0 
depends on the mass value and gauge coupling value entering the Lagrangian, it is natural to 
consider small couplings to reach the Linde-Weinberg low bound. Physically, the Linde-
Weinberg bound reflects the important property of the SSB – the existence of the parameter 
ranges allowing the total effective potential to be dominated by the positive radiation quantum 
effects instead of the negative classical part. Another example of degeneration of the SSB is 
the scalar model at finite temperatures. Studying the phase transition in the O(1) model on a 
lattice, we observed disappearance of the symmetry breaking at extremely small couplings 
[4]. Although there is no direct correspondence between the scalar O(N) model at zero 
temperature in the current paper and the mentioned examples of degeneration of the SSB, 
these analogies reflect the general idea that the SSB in theories with scalar fields can change 
its behavior at some extremal values of coupling λ. 

5. Conclusions 
We have investigated the SSB phenomenon in the scalar O(4) model in the four-

dimensional space-time on a lattice and determined its dependence on the coupling 
values. We have shown that symmetry breaking takes place for λ > λ0 ≈ 10-5. This is in 
the course of common belief that the SSB of continuous internal symmetries is a realistic 
mechanism for particle mass generation. It was experimentally grounded due to the recent 
discovery of the Higgs boson.  

 

 

  
Fig. 1. Dependence of the mean radial field (in the classical condensate units) on the coupling constant λ  

at zero temperature on a lattice 164. 
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The main object introduced in the present paper is the effective Lagrangian for the 
radial field obtained by means of integration over angular continuous variables in the 
spherical coordinates in the internal space. The integration can be realized by the saddle-
point method. The effective Lagrangian is convenient for further lattice investigations.  

The open-source software package QCDGPU was used for MC simulations on GPU. 
We also propose the MC procedure for studying the dependence of the SSB phenomenon 
on the coupling constant λ values in the O(N) models. Within these facilities, we detected 
that the scalar condensate has to disappear at extremely small values of coupling, λ < 10-5 
for the O(4) model. This is in correspondence with the results obtained for the O(1) 
model [4], where the critical value is also λ0 ≈ 10-5. For N > 1 this behavior means that 
the SSB of continuous symmetries also depends on the value of coupling. 

We would like to stress here that the dependence of the SSB on the coupling value is 
a nonperturbative effect which cannot be expected beforehand. This also concerns 
changing the kind of the temperature phase transition. In the literature on this problem, 
most results have been obtained firstly in various perturbation schemes including 
resummations series of Feynman diagrams. It was observed that the dependence on λ 
disappears at all and perturbation theory in this parameter becomes not reliable at the 
critical temperature. So, other perturbation schemes (in particular, the expansion in 1/N 
for large N) have been used. In such investigations the dependence on the λ value was not 
considered. The coupling was usually taken to be of order λ  ≈ 0.01 – 0.1, and a second 
order phase transition has been detected. Such a behavior is in agreement with our 
analysis for O(1) model on a lattice [4] for these coupling values. The extremely small λ 
values were not considered at all. 

In course of the results obtained, obvious problems for further studies are the λ-
dependence of the SSB in the O(N) models for d = 1 - 3 and the temperature phase transition.  
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