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PHASED ANTENNA ARRAY ANALYSIS WITH SCHWARZ ALTERNATING
METHOD

In the paper applying Schwarz alternating method to solving the problem of electromagnetic
wave diffraction on a linear phased antenna array scanning in H-plane is considered. The initial
problem is reduced to solving Fredholm integral equation of the second kind by the simple iteration
method. Expressions for reflection coefficient in i-order iteration are obtained. An application range of
Schwarz alternating method for this problem is obtained. An optimal iteration method, which extends
the application range of Schwarz method, is proposed. Investigation of optimal iteration method
convergence at different number of modes is performed. Reflection factor value at different wall
thickness is obtained. The comparison of obtained results with known ones is carried out. A diffraction
problem for a phased antenna array with dielectric-filled waveguides is solved. Relations between the
reflection factor and scan angle at fixed permittivity values of dielectric filling are obtained. The
applicability for such kind of problems is confirmed.

Keywords: integral equations, Green functions, Schwarz alternating method, phased antenna array,
electromagnetic wave diffraction.

Y poboti posrasinyTo 3actocyBanHsi Mertony LlBapusi nisi po3p’sizaHHsl 3agaui audpakuii
eJeKTPOMAarHiTHoi xBwii Ha JiHiiinid d¢a3oBaniii aHTeHHiil peuriTui, ckanylouid y H-njommsi.
Judpakuiiiny 3aga4dy 3BeJeHo 10 Po3B’s3aHHA iHTerpajbHOro piBHsAHHA Ppearoabma Jpyroro poay
MeTOJ0M MOCJiI0BHUX Ha0JMkeHb., OTpHMaHO BHpa3H s KoedinieHTa BigdUTTA magaw4oi XBUIi B
HaGJMKeHHi i-nmopsiiKy. BcTaHOBIIEHO MeiKi 3aCTOCYBaHHSI PO3IJISIHYTOro Bapianta meroay IlIBapus.
3anponoHOBaHO MeTOJ ONTHMAJLHOI iTepanii, mo po3muploe Mexi 3acrocyBanns Merony llBapus.
IIpoBeaeno nociaigkeHHs 30iKHOCTI MeTOAy ONTHMAJIbHOI iTepauii 3a BpaxyBaHHs pi3HOI KilIbKOCTI
THIIB XBWJIb. OTpHMaHO 3HaYeHHs KkoediuienTa BinOUTTA nmagaodoi XBHJII NMpHM Pi3HUX 3HAYEHHSX
TOBIIMHH CTiHOK XBWJIeBOAIB pelIiTKH, a TaKoXX TNpOBeJeHO NOPIiBHAHHA 3 Yyike BiZoMuUMH
pesyiabTaTamu. Po3B'si3aHo 3aauy npo aHTeHHY pelNiTKY 3 XBHJIEBOJAMH, MOBHICTIO 3alOBHEHMMH
aienexkTpukoM. OTpHMAaHO 3a/1e3KHOCTI KoedinieHTa BiA0OUTTH Nagayoi XBUJI BiJ KyTa CKaHYBaHHS 3a
Pi3HMX 3HaYyeHb Jie1eKTPUYHOI NPOHMKHOCTI cepeJOBMINA, 110 3aN0BHIOE XBuiesoau. IlinTBepaikeno
3aCTOCOBHICTH AJTOPUTMY /10 327124 TAKOTO THITY.

KurouoBi cioBa: interpanshi piBHsHHA, QyHKUil ['pina, meton lIBapis, pazoBaHa aHTeHHA pelIiTKa,
IUQpaKIis eTeKTPOMarHiTHOI XBHUII.

B paGore paccmorpeHo mnpumeHenue Meroga llIBapua ans pemenus 3agauum audpakuuu
3JIeKTPOMArHMTHONH BOJIHBI HA JIMHeilHO#H ¢a3upoBaHHOM AaHTEHHOW pelleTKe, CKaHupywowei B H-
miockocTu. JIuppakunoHHas 3agaya cBeleHAa K pellleHHI0 HHTerpajbHOro ypasHeHusi ®pearoabma
BTOPOr0 PpoAa MeTOAOM MOC/IAeJ0BaTeJbHbIX nNpudmkeHuil. IlojiydeHbl BbIpameHus s
ko3 duumeHTa oTpakeHusl NajawLIell BOJIHbI B NPUOINKEHNH i-TOPSIIKA. YCTAHOBJIEHDbI, IPAHULBI
NPUMEHNMOCTH paccMaTpuBaemoro BapuaHta Mmeroaa IlIBapua. IlpemiokeHn MeTox ONTHMAJIbHOM
HTepaluy, PacCIIUPAIMI rpaHunbl npuMeHuMoctd Metona IlIBapua. IlpoBeneno ucciexoBanue
CXOAMMOCTH MeTO/a ONTHMAJIbHOH HMTepaluH NPH Pa3JUYHOM YHCIe YYUTHIBAeMbIX THIIOB BOJIH.
[Hoayuyeno 3HaveHHe KOIPGUIMEHTA OTPa’KeHMs Nagalollell BOJHbI NPH Pa3IUYHbIX 3HAYEHHMAX
TONIIMHBI CTEHOK BOJHOBOAOB peIleTKH, a TaKike IPOBeJeHO CPaBHeHHe C Yi:ke H3BeCTHBIMH
pesyabTaTamu. Pemiena 3amxada o0 aHTeHHOIi pemieTke ¢ BOJHOBOAAMH, MOJHOCTbIO 3aI0THEHHBIMH
audjekTpukamu. IlosyyeHbl 3aBHCHMOCTH KOI(UIMEHTA OTPa)keHHMsl Najauleil BOJHBI OT yria
CKAHMPOBAHMSA NPHU Pa3INYHBIX 3HAYCHUAX JHIIEKTPUUYECKONH NPOHHIAEMOCTH CPebl, 3aN0JIHSAIOLIei
B0JIHOBOALI. IloaTBep:KIeHA IPUMMEHBIMOCTD AJITOPHTMA K 3a1a4aM TAKOr0 THINA.

KiioueBsble ci10Ba: nHTErpajibHble ypaBHeHus, pynkuuu ['puna, meton IlIBapua, pasupoBanHas
aHTEHHas PEeIIeTKa, TU(PPAKINS FIEKTPOMATHUTHOH BOJIHEL
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1. Introduction

The analysis of characteristics of phased antenna arrays (PAA) with all features of
electromagnetic processes is a difficult task. The integral equation method is one of the
effective approaches to solving these problems. In paper [1] the application of the integral
equation method for the analysis of waveguide phased antenna arrays is considered;
numerical results of the calculations and the characteristics of antenna arrays of different
types are presented. Also, one of the effective methods is the integral equation method for
partially overlapping regions that provides the entire field domain to be sliced on two
simple overlapping regions, for which the solution of the problem is known [2]. A similar
approach is used in the Schwarz alternating method. This method is used for solving
differential equations which satisfy the maximum principle. For example, such problems
include the calculation of critical wave lengths of regular waveguide structures with non-
coordinate cross-sections [3]. However, it is of interest to investigate the application
range of the Schwarz alternating method in solving an inhomogeneous Helmholtz
equation. For example, in paper [4] a problem of electromagnetic wave scattering on a
concentric waveguide junction is solved by Schwarz alternating method with using tensor
Green functions. Thus, the investigation of application range of the Schwarz method to
solving waveguide problems is worth great attention.

2. Formulation of the problem

The Schwarz alternating method is an iterative method to find a solution of partial
differential equations on a domain which is the union of two overlapping subdomains, by
solving the equation on each of the subdomains in turn.

A

e

M |
| |
|

Fig.1. Unit cell of infinite parallel plate phased antenna array.

We consider an infinite parallel plate linear phased antenna array scanning in the H-
plane with a finite waveguide wall thickness. Let us assume that the cells of the PAA are
excited with equal amplitudes and phases that vary linearly. The fields in all periodic cells
are the same and the phase changes by a constant value from cell to cell. Therefore, the
field will be determined in a unit cell that is located at the origin. We will use the E, field
component that satisfies the two-dimensional Helmholtz equation as unknown function in
integral equations, the boundary conditions for the electric field tangential components on
perfectly conducting metal walls and the radiation condition [1]:

AE,(x,2)+k?E, (x,2)=-J(x,2) (1)
The solution of this problem by Schwarz method consists in converting the

differential equation to the system of integral equations for two overlapping regions and
solving it by the simple iteration method [5].
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At first, we divide the whole field definition domain of the selected PAA cell into
two partially overlapping regions (Fig. 1). Region I: —a/2 < x < a/2, —o0 <z < c0. Region
Il: =b/2 < x < b/2, 0 <z <. The planar waveguide Hyo wave is excited in region | at
z — -o0. Suppose that the Green functions of regions | and Il are known. Then we can
make a system of integral representations of fields for each region with Green's second

identity:
F a 0 a ).,
E;(x,z)zEex(x,z)+£E;'(—E, ja—XG ( —E,z]dz -

. 5 )
—JE;I(E,Z’]—,GI[X,Z;E,Z'szl,

5 2 OX 2
E)(x,2)= j E;(x”,O)%G "(x',2';x",0)dx" . 3)

0

The Green function of region | is represented as a series of normalized orthogonal
waveguide eigenfunctions:

(x,2;%,2') Z(pq 21_17 exp(— j7q|z—z'|). (4)

q

Here: @q(x)zgsin%(x+2j is a normalized orthogonal waveguide

eigenfunction, y, =-] (qnj —k?, k=2m. Because of the periodic character of the
a

PAA excitement the Green function of the second region is represented as a series of
“Floguet™ harmonics [1]:

1 P
(x,z;x,2') Zy/q JTGXD( iCnzBh(ir,2'). ()

m

Here: \yq(x)z\/%exp(jUmeJ, symbol “*” denotes complex conjugation,

. 2
kbsLbJFZrnnj —k? . Incident wave is a waveguide

wave with unit amplitude composed with excluding diffraction on discontinuity:
Eex (X, Z)= (Pl(x)eXp(_ lez)- (6)
Assuming the values of each unknown function at the intersection of regions are
equal each other and fixing coordinates of source and observation points, we substitute
the equation (3) into (2) and obtain a Fredholm integral equation of the second kind in
respect to the field function of the first region:

U, =kbsin®+2mn, I, =—j\/(

a

Ej(x,2)=Eq(x,2)+ iEJ,(x",O)K(x, z;x",0)dx", 7

2
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K(x,z;x",2") .[ - ”( 2" X"O] 0 G'(X,z;—g,z’j_
0 ox' 2
—iG” a ! no a GI X,Z;E,Z’ dzr
oz" 2 ox' 2

Performing the integration in the integral equation kernel (8) allows us to obtain the
following expression for it:

K(x,z;x",2" Z Z(pq (x)expl o2 (X" ©)

Gt o ]

Then, we solve the integral equation (7) directly using a simple iteration method.
Exciting wave function (6) is used as a zero-order approximation.

In order to obtain an expression for the reflection factor of Hy, incident wave, it is
needed to represent the unknown function as a sum of incident and reflected waves:

(8)

£} (12)=p(0eral- 12) 3R oolire). &

Using (11) in the left side of the f|eld deflnltlon expression and equating the
coefficients at equal ¢4 allow us to obtain the value of the reflection factor in each
approximation order. Thus, the reflection factor at i-order approximation is represented
by the following expression, where infinite numbers of modes are reduced to their finite
values:

AL (12)

n=1

M Q
WO VT = 57 SV Do R =0, V<1

m=-M q=1

Here: Dy, =

—_—

N

i=1,2,3...0; M, and Q are maximum numbers of considered modes in “Floquet” and
waveguide regions correspondingly.

3. Numerical results

According to the given algorithm, the program for computing numerical values of
the incident wave reflection factor modulus and phase was compiled. On the base of the
obtained results an investigation of the method convergence and its application range was
performed as well as a comparison of the results with the known values obtained by the
method of partially overlapping regions (MPOR) [2].

The results of the method convergence on each approximation step and comparison
with known data are shown in table 1. The antenna array parameters are: b/A=0.5714;
sinf=0.05; (b—a)/b=0; 0.02; 0.063. Numbers of considered higher order modes are M=16,
Q=32 at each approximation step.

The numerical experiment show that the convergence of series (12) decreases
significantly when wall thickness takes such values at which the reflection factor modulus
reaches values |Ryo| > 0.45 and the kernel rate ||K||> 1.12. Further increasing of the wall
thickness value makes the simple iteration method inapplicable to solve this problem.
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Table 1
The results of the method convergence at each approximation step
(b—a)/b=0 (b—a)/b=0.02 (b—a)/b=0.063
[ IK|=1.0164 IKlF1.1 lIK||=1.3859
Modulus Phase Modulus Phase Modulus Phase
1 0.44525 138.99 0.51085 138.19 0.75049 138.25
2 0.3574 165.15 0.39451 168.33 0.52793 -174.28
3 0.32867 151.43 0.35131 149.5 0.39834 136.38
4 0.35842 155.24 0.40182 15551 0.6079 160.77
5 0.34223 155.36 0.37016 155.86 0.39392 163.84
6 0.34755 154.60 0.38173 154.23 0.51254 150.61
7 0.34695 155.09 0.38058 155.39 0.49421 163.56
8 0.34636 154.90 0.37859 154.89 0.44892 154.95
9 0.34687 154,94 0.38039 154.99 0.5062 157.58
10 0.34664 154.95 0.37949 155.04 0.46431 159.46
11 0.3467 154.94 0.37974 154.98 0.48094 156.04
12 0.3467 154.94 0.37977 155.01 0.48453 158.84
13 0.34669 154.94 0.37969 155 0.47139 157.47
14 0.3467 154,94 0.37974 155 0.48413 157.53
15 0.3467 154,94 0.37972 155 0.47674 158.2
Exact solution MPOR
0347 | 1559 0.37836 | 15511 | 047169 | 157.99

In order to obtain a convergent solution, the simple iteration method (SIM) can be
transformed into the optimal iteration method (OIM). With this aim in view the left side
in the equation (7) was moved to the right and the resulting expression was multiplied by
a factor . Then the unknown function E,(x,z) was added to both sides of the resulting
equation. Thus, an expression for E,(x,z) in i-order approximation takes the form

y

E:,<i>(x, z)= B, (x,2)+(1- )E;<i‘1> (x,2)+ TE'<i‘1> (x", 0K (x, z;x",0)dx" . (13)
;

After all the necessary changes, the expressions for the reflection factor in i-order
approximation takes the form

Ry =R+ A, p) V" (14)
n=1
-y () (0) (0)
Here V" Z DV DgCon s Rip' =0, V7 =1, Ay = Ay + Ajan
m=-M g=1

A, =1,i=1,2,3.. ..

The iterative process can be convergent to an approximate result with a minimum
relative error by choosing a coefficient 3 to be equal to the reciprocal value of kernel rate.

Let us consider the effect of the number of considered modes on the solution
convergence and accuracy for simple and optimal iteration methods. PAA parameters are:
b/A=0.5714, sin6=0.05, t=(b—a)/b=0. The convergence for both methods at different
numbers of considered modes M and Q at each approximation step is given in table 2.

Table 2 shows that calculations with a few numbers of considered modes cause minimal
computational accuracy and require maximum number of iterations in order to obtain a
convergent solution. At larger values of M the iteration process is convergent at | < 15.
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Table 2

The convergence of SIM and OIM at each approximation step at b/A=0.5714, sin6=0.05, t=(b—a)/b=0,
M=2;12;26, Q=2M

: Rigl. OIM Rl SIM
M=2 M=12 M=26 M=2 M=12 M=26
1 0.49199 0.43585 0.41934 0.44525 0.45365 0.45395
2 0.34459 0.37836 0.37951 0.35588 0.37693 0.37746
3 0.30517 0.3208 0.32717 0.31159 0.31432 0.31446
4 0.37146 0.35345 0.34936 0.34995 0.35967 0.35988
5 0.32001 0.34817 0.34895 0.33518 0.34644 0.34677
6 0.34127 0.34489 0.34592 0.33599 0.34421 0.34447
7 0.33969 0.34734 0.34713 0.33846 0.34825 0.34853
8 0.33402 0.3468 0.34715 0.33685 0.34644 0.34674
9 0.33929 0.34662 0.34697 0.33729 0.34660 0.34688
10 0.33661 0.34680 0.34704 0.33735 0.34689 0.34718
11 0.33719 0.34675 0.34704 0.33723 0.34669 0.34698
12 0.33756 0.34674 0.34703 0.33729 0.34674 0.34703
13 0.33706 0.34675 0.34703 0.33728 0.34676 0.34705
14 0.33737 0.34675 0.34704 0.33727 0.34674 0.34703
15 0.33727 0.34675 0.34703 0.33728 0.34675 0.34704
16 0.33725 0.34675 0.34703 0.33727 0.34675 0.34704
17 0.33730 0.34675 0.34703 0.33727 0.34675 0.34703
18 0.33726 0.34675 0.34703 0.33728 0.34675 0.34703
19 0.33728 0.34675 0.34703 0.33727 0.34675 0.34703
20 0.33728 0.34675 0.34703 0.33728 0.34675 0.34703

Table 3 shows calculation results for values of the reflection factor modulus, phase
and required runtime at different values of M and Q at i=15. PAA parameters are:
b/A=0.5714, sin6=0.05, t=(b—a)/b=0. Table 3 shows, that increase of a number of
considered modes leads to increasing an accuracy of the calculation, however, it also
increasing a runtime required for obtaining each value of the reflection factor. Thus,
values M=16, Q=32 were chosen for further calculations.

Table 4 shows numerical results obtained at different values of scan angle and
waveguide wall thickness using SIM and OIM along with known results obtained using
the method of partially overlapping regions. PAA parameters are: b/A=0.5714,
t=(b—a)/b=0.063; 0.12. The number of iterations is i = 15. The number of considered
modes amounts M = 16, Q = 32.

Table 3

Reflection factor modulus, phase and required runtime at different values of M and Q at i=15,
b/2=0.5714, sin6=0.05, t=(b—a)/b=0

M Q OIM SIM
Modulus Phase Runtime, s. Modulus Phase Runtime, s.

2 4 0.33727 154.27 0.094 0.33728 154.26 0.031
4 8 0.34424 155.04 0.172 0.34423 155.04 0.156
6 12 0.34575 155.32 0.5 0.34575 155.32 0.516
8 16 0.34632 155.46 1.141 0.34632 155.46 1.125
10 20 0.34659 155.54 2.156 0.34659 155.54 2.172
12 24 0.34675 155.60 3.703 0.34675 155.60 3.688
14 28 0.34684 155.64 5.828 0.34684 155.64 5.843
16 32 0.34690 155.67 8.609 0.34690 155.67 8.719
18 36 | 0.34695 155.70 12.235 0.34695 155.70 12.671
20 40 | 0.34698 155.72 17 0.34698 155.72 16.781
22 44 0.34700 155.73 22.063 0.34700 155.73 22.906
24 48 0.34702 155.75 28.703 0.34702 155.74 29.422
26 52 0.34703 155.76 37.156 0.34704 155.76 36.516
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Table 4
Reflection factor modulus and phase, obtained with different methods at b/A=0.5714
¢ sind MPOR SIM OIM
IR 10| Phase |R10] Phase |R10] Phase
0.05 0.47176 158.01 0.47845 158.27 0.47164 158
0.20 0.46258 156.65 0.46543 156.57 0.46246 156.64
0,063 0.40 0.42858 151.62 0.42839 151.59 0.42846 151.61
0.60 0.34548 139.23 0.34534 139.21 0.34534 139.21
0.70 0.24574 124.07 0.24556 124.06 0.24556 124.06
0.05 0.80654 172.94 >1 - 0.80645 172.93
0.20 0.80173 172.61 >1 - 0.80163 172.61
0,12 0.40 0.78317 171.47 >1 - 0.78304 171.47
0.60 0.73269 169.1 >1 - 0.73254 169.1
0.70 0.66365 167.66 >1 - 0.66349 167.66

The results shown in Table 4 confirm that OIM allows us to obtain a problem
solution when SIM is inapplicable. Thus, the OIM-algorithm enlarges the application
ranges of Schwarz alternating method.

4. The phased antenna array with dielectric-filled waveguides

Now we assume that the PAA cell has a waveguide region at —a/2 < x < a/2, —0 <z
< 0 filled with uniform isotropic dielectric matter with permittivity €. It is needed to find
the reflection factor of incident wave inside waveguide. The Schwarz algorithm described
above can be used to solve this problem. The integral equation for the unknown function
has the form similar to Eq. (7). “Floquet” region remains unchanged, thus, Green function
for it is described by Eq. (5). The Green function for parallel plate waveguide is
represented in a “sourcewise” form:

G'(x,z;x',2") Zqoqx)go )f(x,x). (15)

The series of normalized orthogonal waveguide eigenfunctions ¢ is unchanged. It
is necessary to find only function depending on the longitudinal coordinates of source (z)
and observation (z’) points. To do this, we form the equation of electromagnetic wave
propagation in an infinite parallel plate waveguide for each subregion with the presence
of a dielectric filling. It should be noted that the source points are located at z” > 0.

fq'(x,x’)ztexp(j;/(;z) at —0<z<0,
I n 1 I o (16)
fq (x,x)_mexp( irylz-z |)+rexp( quz) at 0<z<w

q

A set of equations for the unknown coefficients t and r can be formed by equating
functions from (16) to each other at the interface z=0. In this formulation of the problem
observation point takes values z<0. Thus, it is needed to determine only coefficient t and
to use only first equation from system (16) in order to build the Green function. An
unknown function has the following form

£ (ex) = expl- i 2)expliy2). (17)
J7q + 174

Here ;" ——j\/[q—”j —(k'OF K'=2m, k' =274z .
a
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The kernel of the integral equation is described by Eq. (9). Coefficient Cyn is
determined by the following expression

Cyp = ‘/i —ar exp(— j aU_mj - exp(j Uy, )cos(qn) 18
an ab a(y:q +y(']' qu +Fm) 2b 2b ' (18)

Exciting wave is a waveguide wave with unit magnitude composed with a
considering of the wave reflection on medium interface

(0)

Eo(x.2)=0, (X)EXp(_ in Z)+ Rio' o (X)eXp(j71l Z)- (19)

Here ng> — the reflection factor of the incident wave Hi, in a parallel plate

waveguide from the interface between two media with different permittivity, which is
determined by the expression:

R<o> _ 7’1| —7’1”

10 7 ) n- (20)
itn

In order to obtain the value of reflection factor the unknown function of electrical
field in a waveguide is represented in the form of the expression (11). Solving the integral
equation (7) we obtain an expression for the reflection factor at i-order approximation:

R = (1+ R )Zv1<”> . (21)
n=1

M Q
-1 0 .
Here V" = Y M'v"™p, C,,, V¥ =1,i=123...c0.
m=—M g=1
The same expressions for reflection factor can be found for OIM through solving an
Eq. (13):

Riy =Riy Y + (1+ Ry )Z A= B) IV (22)
=1

M Q
Here: V’§n> =B Z qu<n71> quCpm | Véo> =1, Ain = A(i—l)(n—l) + A(i—l)n’ A11 =1,

m=—M g=1

i=1,2,3...0.

On the basis of obtained results the value of the reflection factor was calculated for
PAA with parameters b = 0.5714A and b = 0.4, t = (b — a)/b = 0.063. The permittivity of
the dielectric filling took values from 0.9 to 6.5. The values of the dielectric filling
permittivity were chosen in order to allow only one of waveguide modes to be
propagating inside the waveguide. The dependence of the reflection factor modulus and
phase against the value of scan angle is plotted in Fig. 2 for PAA with b = 0.5714A, € =
0.9; 1.1; 1.3; 2.0; 3.0 and in Fig. 3 for PAA with b = 0.4, € = 2.0; 3.5; 6.5. Calculations
were made using SIM (solid line) and OIM (dots). It was assumed that M = 16, Q = 32, |
= 15. The results obtained in paper [1] for similar PAA is shown in Fig. 4.
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Fig. 2. The dependence of the reflection factor modulus (a) and phase (b) against the value of scan
angle for PAA with b =0.5714%, and £ = 0.9; 1.1; 1.3; 2.0; 3.0.
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Fig. 3. The dependence of the reflection factor modulus (a) and phase (b) against the value of scan
angle for PAA with b = 0.4, and & = 2.0; 3.5; 6.5.
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Fig. 4. Known results from paper [1]: b = 0.5714A (a), b = 0.4 (b).
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5. Conclusions

Applying the Schwarz alternating method to electromagnetic diffraction problems is
considered in this paper. Expressions for Hy,—type incident wave reflection factor in unit
cell of infinite PAA with finite waveguide wall thickness are obtained. Numerical
experiments allow finding the dimensions of discontinuity, at which the simple iteration
method becomes inapplicable and gives incorrect results. In this case, an optimal iteration
method giving a convergent solution for this problem at larger discontinuity dimensions,
was used. The investigation of convergence was performed for both methods at different
numbers of considered modes in waveguide and Floquet regions. As a result, the
convenient number of modes and maximal iteration order that give a solution with
maximal accuracy are obtained. The results are compared with known ones for this
problem that shows the correctness of the built algorithm. These results are used to obtain
a solution for infinite PAA of parallel plate waveguides with dielectric filling. Obtained
dependences of the reflection factor versus scan angle at different permittivity of
waveguide filling are shown as plots. For this solution the number of considered waves in
waveguide region is Q = 32, in “Floguet” region M = 16 and iteration order i = 15. It
should be noted that at € = 0.9 and scan angles kbsinf < 100° a simple iteration method
does not allow to obtain a convergent solution. This fact is well shown in Fig. 2. The
comparison of the obtained results with known ones from paper [1] shows correctness of
the built algorithm and its applicability for solving such kind of electromagnetic
scattering problems.
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