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TOLMAN’S VOIDS IN THE FRIEDMAN UNIVERSE

Discovery of regions in the Universe with density of matter which is significantly lower than that
of their surroundings (so-called voids) enhances theoretical studies of these objects and their effect on
the evolution of the Universe. As it becomes clear, similar violation of the homogeneity and isotropy
properties of the Universe takes place also at significantly large (compared with distances between
galaxies) scales (the tens and hundreds of megaparsec). Voids in the Friedman Universe are simulated
by a spherically symmetric regions described by Tolman dust space-times. In this paper, we consider
the modeling of a void by matching two different metrics and studying their temporal evolution. As
matching conditions the Lichnerowicz—Darmois conditions are used. It is found that the space
curvature of a void should be of the same sign as the external space one. The voids cannot exist in the
flat Friedman Universe. The voids of two different classes in the hyperbolic Friedman Universe are
built. Matter in such voids is always “older” than in their environment. The results of studying the void
model parameters are presented.
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Binkpurrsi y BcecBiti o0nacreii 3 rycTHHOIO MaTepii, 3HAYHO HIIKYOI0 32 TYCTHHY
HABKOJMIIHBOTO NPOCTOPY (TaK 3BAHMX NMOPOKHHMH), AaKTHBi3yBaJl0 TeopeTHYHe JOCTiAKEHHS LHX
00’ekTiB Ta iX BIVIMB Ha eBoawuHilo BceecBirty. fk crano 3po3symino aHajloriyHe mnOpyuHICHHs
BJIACTHBOCTell OJHOPiAHOCTI if i3oTponii BeecBiTy Bin0yBaeThes i Ha AOCHTH BeJIMKHUX (IOPiBHSIHO 3
BiICTAHSIMM MiXK rajJakTHKaMu) mMacimradax (aeciTkM Ta cOTHi meramapcek). Y BcecBiti ®pinmana
MOPOKHUHH MOJEJIIOIThCS SIK 00,1aCTi, 110 ONUCYIOThCS MpocTopoM-4acoM Toamena. B naniii podori
MPONOHYEThCSI NMOOYI0Ba MOJeli NMOPOKHUHU HLISAXOM 3LIMBKH JIBOX Pi3HHX MeTPHK i po3rusiay ix
epo.Iionii B yaci. B poJii yMoB 3m1mBKH BHKOPHCTOBYIOThCSI yMoBH JlixHeposnua—/lapmya. IIpocTopoBa
KPHBHHA MOPOKHUH Ma€ OyTH TAKOI CaMoOI0, fIK i MPOCTOPOBAa KPMBHHA 30BHIIIHBLOI0 MpPoOCTOpPYy. Y
BcecBiti ®pinmana Hy/JIb0BOI NPOCTOPOBOI KPUBUHM NOpPOoXKHMH He icuye. IlodymoBano mopesi
MOPOKHUH IBOX pi3sHHMX KiaciB y Bceciti ®@pigmana Bix’emHoi npocropoBoi kpusuHu. PeyoBuna B
IMX MOPOXKHHHAX 3aBkKIM “cTapima”, Hik B oTouyw4omy mnpocropi. Haseneno pesyabraTn
JDOCTiIKeHHsI MapaMeTpiB Mo/ieseii po3risiAyBaHNX MOPOKHMH.

Kuro4oBi ci10Ba: KOCMOJIOTIYHI MOJIENTi, METPUKA, TOIMEHIBCbKHIA BcecBiT, MOPOKHUHM, €BOJTIOLLISL.

OtkpeiTHEe BO BceeneHHoii o0macTeil ¢ IVIOTHOCTBIO MaTepHH 3HAYHMTEJbHO HHKe IIOTHOCTH
OKpY’KaloIllero NPOCTPaHCTBa (TaK Ha3bIBaeMbIX MNYCTOT) AaKTHBH3HUPOBAJIO TeopeTHYecKoe
HcclIeloBaHHe 3THX 00beKTOB M MX BJIHsHHe Ha 3Boionnio Beesennoii. Ctalno sicHO, YTO aHATIOTHYHOE
HapylIeHHe CBOMCTB 0OJHOPOJAHOCTH U M30TPoNuHU BceeneHHOl MPOMCXOAUT U HA 10CTATOYHO 0OJIBIIMX
(B CpPaBHEHHHM € PACCTOSTHUSIMH MeXKIY ralakTHKaMH) MaclITadax (IecITKH M COTHH Meramnapcek). Bo
Bceenennoii ®puaMaHa mycTOTBI MOJEJIHUPYIOTCH Kak 00JaCTH, ONHCbIBaeMble NPOCTPAHCTBOM-
BpemeHeMm Toamena. B nannoii paGore nmpemaraercs nNocTpoeHue MoOJeJH IMYCTOTHI NMyTeM CLIIUBKH
ABYX Pa3HbIX METPHK M PACCMOTPEHHs] MX JBOJIOLMHM BO BpeMeHH. B kauecTBe yc/0BHIi CHIMBKH
HCNOJB3Y0Tes yeaopus Jinxneposuya—/lapmya. IIpocTpancTBeHHass KPUBH3HA MYCTOT J0JIKHA OBITH
TaKo# e, KAK M NPOCTPAHCTBeHHAs KPHBH3HA BHeIIHero nmpocrpancrea. Bo Beenennoii ®@puamana
HYJIeBOIi NMPOCTPAHCTBEHHOH KPHUBHU3HBI NMYCTOT He cymlecTByeT. IlocTpoeHbl MojeaH MycTOT ABYX
pPa3sJMYHBbIX KJaccoB BO Bcenennoii ®puamMaHa oTpHUUATEJbLHOH INPOCTPAHCTBEHHOW KPHBU3HBI.
BemecTBo B 3THX mycToTax Bcerjga “crapee”, 4eM B OKpyxkawiueM npocrpancrse. Ilpusenensi
pe3yJIbTAThl HCCIeJ0BAHNA NIAPAMETPOB MOJeJIell paccCMaTpHBAaeMBbIX IYCTOT.

KiroueBbie cj10Ba: KOCMOJIOTHUECKHE MOJEIM, METpHUKa, TOJMEHOBCKas BceieHHas, IycTOTHI,
3BOJIFOLIMS.
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1. Introduction

In recent years there were many astronomical observations of large spherical regions
in the Universe with density of the luminous matter, which is far less, than that of their
surrounding, so-called voids [1-2]. This data enhanced theoretical studies of the evolution
and effect of such regions in models of the expanding Universe. There are four main
directions of investigations: small perturbation of homogeneous cosmologies, use of the
Einstein-Straus vacuole, use of Tolman space-time, representation of the void boundary
as the thin wall approximation [3-4]. As a result investigators come to contradictory
conclusions concerning the formation and evolution of voids [5-7].

In this paper we obtain some results regarding voids in cosmological models. We
use the voids, constructed by matching of Tolman solution for nonhomogeneous dust
(description of void space-time) and Friedman solution for homogeneous dust
(description of space-time in the surrounding Universe) as a special case of the Tolman
one. To gain a continuity of the first and second fundamental forms of the matched
metrics, we impose the Lichnerowicz—Darmois matching conditions. The voids described
by the Minkowski space-time, cannot exist in the Friedman Universe [8]. But it is
possible to choose the Tolman Universe with exotic parameters, and such Universe can
contain the voids described by empty space-time. The Friedman Universe also cannot
have the voids, which are described by another Friedman space-time.

2. The Tolman solution

To construct the model of voids we use the mass function method proposed in the
paper [9] and considered in [10].

The Tolman solution for the motion of spherically symmetric nonuniform dust for
all types of the space curvature in the curvilinear coordinate system has the form

2 _ 2_r'2(Rat) 22 2 2 2
ds® =dt (R dR* —r*(R,t)(dO” +sin” &dg~), (1)
where
2 2
((R.t) = m(Ez) { sin (20(/2) }for{fz(R)<1; o
1-f°(R) |—sinh*(a/2) f*(R)>1
~ ~ m(R) a-sina f2(R)<1
t=h(R)= - R {Sinha—a} for{f *R)>1’ 3
3 2/3
r(R,t):[igm(R)”z(t—to(R))} for f?(R)=1. 4)
The energy density is
e(R,t) = ! m(R) (5)

87y r’*(R,Or'(R,t)

The speed of light ¢ =1. The constant a, =4yM / 3mc?®. It has the sense of the

maximum radius of the world for a positive space curvature. The mass function m(R) is
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an active gravitational mass inside the sphere R (the rest-mass plus rest gravitational
binding energy), f(R) is an arbitrary integration function. It is the total energy of a
particle inside the layer R . The function t;(R) is initial moment of the collapse of layer

R, a so-called temporal shift.
The Friedman solution describing the uniform dust distribution is a special case of

Egs. (1)-(5) with t;(R) = 0 and the mass function

sin® R f2(R)=cos’ R
m(R) = a,{sinh’ R} for { f (R) =cosh’ R, 6)
R’ f2(Ry=1

for positive, negative, and zero space curvature, accordingly.

3. The matching conditions

As matching conditions of our metrics we choose the Lichnerowicz—Darmois
conditions [11]. They represent the equality of the first and the second quadratic forms of
intrinsic and external metrics on the matching hypersurface. As the boundary of the void

we takes the hypersurface R = R, = const . From matching conditions it follows that on
this hypersurface the following conditions should be fulfilled

Ry, t) = (R te), fr(R) = fe(Ry), mp(Ry) =me(Ry) ™)

where the characters T and F denote values concerning to Tolman and Friedman space-
time, accordingly. After applying the matching conditions (7) the Tolman solution
remains enough arbitrary. However, these conditions require the space curvature of the
voids to be of the same sign as the space curvature of external space. Without loss of
generality it is possible to suppose the function f(R) be the same in both metrics (1)-(6).

Starting from (7), we obtain that on the matching surface o, (R,,t;) = o (t;), therefore

t, _tO(Rb):tF' 3

We can conclude that if t;(R)#0 matter in the voids is “older” than in

environment. For the first time this fact was noted by Bonnor [8, 12]. Let us emphasize
that if the times for Tolman and Friedman spaces on the matching surface are equal, i. e.

t,(R) = const, the voids do not exist.

4. Voids in the flat Friedman Universe
The mean density of matter in the voids is
M T

ETEE(tT)=V—, 9)
T

Rb Rb
where M = J.gql—ngd6U¢ and V = J.ql—ngd6d¢ are the mass and the size of
0 0

the void. Taking into account Egs. (1)-(5), we can rewrite the expressions for mass and
size of the void in the case of Tolman space as
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Rh ’ Rb 2 '
M — J.mT(R)dR, V — I rT (Rat)rT(Rat)dR (10)
o - (R) 0 (R
Substituting expression (10) in (9), we obtain
& =3m (R)/F (R, tr). (11)

The expression for mean density (11) is fulfilling for any Tolman solution, including
the Friedman one.

me(R) _ 3me(R)
PR

Due to the homogeneity of the Friedman space we get &g (1) =

As €, (t) does not depend on R, we always can replace R by R,

g = e () =3m. (R,)/r2(R,.tp). (12)

Comparing Eqgs. (12) and (11), we can conclude that in the Universe with zero space
curvature it is impossible to build voids by our method. In this case the homogeneous
energy density of external space is equal to the void mean energy density.

5. The model of voids in the hyperbolic Friedman world
To describe the external space we consider the Friedman solution

r.(R,tp) =a, sinh(R)sinh*(a /2), t, = %(sinha -Q). (13)

To take the Tolman solution for void description we should choose the mass
function. The last one can be arbitrary enough because it is constrained only by the
matching conditions (7)
sinh™' R W¥(R)
sinh" R, Y(R,)

mT(R):aO{ +(F(R) - F(Rb))L} (14)

where Y(R), W(R,) and F(R) are arbitrary functions without singularities at
0<R<R,; nand L are arbitrary numbers.
sinh™' R Y(R)

Let us consider a simple case M (R)=a, Simh™ R, , ¥(R) =1 and
F(R)=F(R,) =0. Then
: n+1
Rt =2, R Gnh?(a, /2), (15)
sinh"™ R,
a, ( sinhR )"
sSin
t, —t,(R)=—" sinha; —a;). 16
T 0( ) 2 (s]nthj ( T T) ( )

From these equation it follows that there are two different classes of the Tolman
solutions: for N >2 and N< 2. Case N =2 corresponds to the Friedman solution (13).
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Sizes of voids. According to astronomical data, the observable voids in the Universe

have sizes ranging from 25 Mpc up to 100 Mpc (7.5-10° cm — 3.74-10*° cm). The
greatest observable void in Bodtes constellation has the size of 124 Mpc. Within the
framework of the considered model the sizes of voids are described by the dimensionless

value R, . The above-mentioned data should be treated as the sizes of the voids measured

by an observer in the Friedman Universe. But such a size depends on the value R, as
follows

r.(R,,t;) =re (R,,t;) =, sinh R, sinh* (- /2), (17)

where o is taken from Eq. (14), a, = 1.0-10® cm=3.5-10° Mpc. From Eq. (17) it
follows that the void size depends on the value R, , varies with time and does not depend
on the parameter N .

In Table 1 the temporal evolutions of void sizes depending on the value R, are

presented. The dimensionless value t; is connected with time in the Friedman Universe
by means of the relation

t, =t x3-10"s. (18)
Table 1
Temporal evolution of void sizes in the Friedman Universe with negative space curvature
¢ Size of voids (cm)
f Ry, = 0.005 Ry, =0.01 Ry =0.02
0.1 1.5-10% 3.10% 6-10%
0.5 4.8.10% 1-10%¢ 2-10%
1.0 8.1-10% 1.6-10% 3.2-10%
1.5 1.1-10% 2.210% 4.5-10%

The selected row represents the values of sizes at present. We can make the conclusion
that the models of the voids satisfying the observational data should be characterized by

the value R, varying within the range of 0.004 <R, <0.02 (the void in Bodtes
constellation corresponds to R, =0.023).

Let us consider models of both classes in details.
The models of the voids for the case n< 2. For the model of the voids with n =1
the Egs. (14) and (15)-(16) take the form

m.(R) = a, sinh® Rsinh R, , (19)

8 SR, he —a). (0)

r.(R,t;) =a,sinh R sinh’(a; /2), t, —t,(R) = :
2 sinhR

In the class under consideration this is the unique satisfactory solution (for integer values
of N), as all the solutions with N <1 have a singularity: r — o with R —> 0.

Then the mass of voids is M ;(R,)=2a,sinh R (coshR, —1). The configuration
size can be presented in the following form
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V(R tr) =a5 (A (R, 1) + By (Ry.tr)). @2

inh® R, sinh®(a; /2
S p SN (@7 /2) is taken on the void boundary,
3cosh R,

therefore in order to calculate the function 0., on the boundary, it is necessary to use the
equation

The function A (R,,t;)=

t, —t,(R,)=a,(sinha; —a;)/2=t.. (22)
Thus, we can make changes d; — o, and A(R,,t;) > A(R,,t;). To calculate the

sinh’® R, sinh Rsinh®(c; /2) dR
3 cosh’ R

it s

Rb
function o, in expression Bl(Rb,tT):I
0

necessary to use the first equation (20).
The Friedman solution gives the following values for the mass and size of the
configuration

3a, ( sinh 2R
M. (R.)= >0 | S =Ry
F( b) 2 ( 2

_ijaVF(RbatF):ag(Cl(Rb’tF)+Dl(RbﬁtF)) (23)

sinh® R, sinh®(a /2) .

where to calculate o (t;) in expressions C (R,,t;)= nd
3coshR,
Ry - 4 . 6
h” Rsinh 2
D,(R,.t;) = J.Sln S 5 (e / )dR the following condition is used
0 3cosh” R
t. =a,(sinha. —ag)/2. (24)

Therefore, A (R,,t;)=C,(R,.t;).

Using the mass of voids and Eq. (21) the mean density of matter in the voids,
described by Tolman solution, is calculated. In the same manner, using Egs. (23), the
density of matter in the region of the same radius, but described by Friedman solution, is
calculated.

The constructed model of the hollow can be considered as the model of void
provided that E—T = My (Ry) Ve (Ry,te)
& MRy VrRyuty)

<< 1. For the model under consideration we

have

€
— (25)
€

_ 8sinh R, (coshR, —1)( C,(R,,t,) + D,(R,.t;)
3sinh2R, -2R, | C,(R,,t.)+B,(R,,t.) )

It should be noted that if t,(R) = const the voids do not exist. The voids can exist
only if t;(R) # const. Let us consider some models, each of which is characterized by
the different value of the configuration radius R, (0.005 and 0.01) and temporal shift

t,(R) =R . In Table 2 the numerical calculations of time evolutions of parameters in the
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considered configurations are presented. The current instant corresponds to tg =3- 10'7s.
In all surveyed models the voids arise relatively recently, not earlier than in the moment

of 0.75-3-10"7s. As a matter of record we can assert that the voids are conceived not so
long ago and persist in the future.

Table 2
The parameters of voids (T) and Friedman space-time (F) for N = 1
Ry te Vr Vg Mr/Mg 1 /Er
0.10 1.013 0.987
0.50 3.33 0.3

0.005 1.0
1.0 41.7 0.024
1.50 303.03 0.0033
0.10 1.011 0.989
0.50 2.36 0.423

0.01 1.0
1.0 22.22 0.045
1.50 156.25 0.0064

We see that the total masses of the configurations are equal for Tolman or Friedman
solution. However, the size of configuration described by the Tolman solution is much

greater than the size of configuration described by the Friedman one (with the same R,).
As the result, we obtain the models of the voids satisfying the necessary requirements.

The models of the voids for the case n > 2. Let us consider the model of the voids
with the mass function (14) and n=3. In this case Eqs. (14)-(16) are reduced to

sinh* R
m.(Ry=a, ———, 26
(R)=a T 2o
sinh’R . a, sinhR .
r.(R,t.)=a,———sinh’*(a; /2), t. -t (R)=— sinha, —«a
T( T) Osinth ( T ) T 0( ) sinth( T T) 27

8a, sinh’ (R, /2)
3 cosh(R,/2)
size can be written in the form V. (R,.t;)=a; (A (R,.t;)+B,(R,.t;)) where the
function A (R,,t;) is taken on the voids boundary, and to calculate o in the function
R, . 7 . 6

sinh” Rsinh” (a5 /2)
B,(R,.t;) = S—dR,
2 (Rotr) J; 3sinh® R, cosh” R

calculate the total mass and size of the configuration described by the Friedman solution
we use Eqgs. (23) and (24).
The investigation of models of the given class was carried out for

Then the void mass is M, (R,)=

(coshR, +2). The configuration

it is necessary to use Eq. (20). In order to

5107 < R,<2- 107, The numerical calculations give the grounds to confirm that such

models describe the voids which were existing only in the early Universe. Now they are
filled with matter. These features is inherent to all models of the class N > 2.
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6. Conclusions

Using the matching conditions of two different metrics, the models of the voids are
constructed. Such voids are described by Tolman space-time with the mass function (19),
the external space-time is the Friedman one. From matching conditions it follows that the
space curvature in the void should be of the same sign as in the Friedman space-time, i. e.
positive, negative or zero. However, space curvature of the voids can essentially differ
from the curvature of the Friedman space. It is shown that in the flat Friedman world the
voids, constructed by matching of Tolman and Friedman solutions, cannot exist.

The models of the voids in the hyperbolic Friedman Universe are built. It is shown

that matter in these voids is always “older” than in external space. If t;(R) = const, the

voids do not exist. The voids described by the Tolman solution with the mass function
(19) exist no more than one quarter of all the Universe lifetime and persists in the future.
Such void sizes correspond to the observational data.

It is interesting to emphasize that the voids appear not because the mass of the
configuration with the Tolman solution is less than the corresponding mass in the
Friedman world, but because of the great difference of sizes of these configurations.

The voids described by the Tolman solution with the mass function (26) do not exist
at present.
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