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TO THE PROBLEM OF CALCULATION OF THE EFFECTIVE INITIAL
CONDITIONS FOR HYDRODYNAMIC EQUATIONS

Problem of effective initial conditions for hydrodynamic equations is investigated for a rarefied
gas described by the Boltzmann kinetic equation. The consideration is based on the Bogolyubov func-
tional hypothesis that leads to a generalization of the Chapman-Enskog method of the hydrodynamic
equation construction. Using this hypothesis, a basic integral equation for the effective initial conditions
of the theory is obtained. This equation solution is investigated for states close to equilibrium because
dynamics of the system, described by the nonlinear Boltzmann equation, cannot be analyzed at the
present time. The basic integral equation solution is reduced to the analysis of integral equations of the
type similar to ones introduced by the Chapman-Enskog method. Such equations can be solved ap-
proximately by an expansion method in the Sonine polynomial series. It is shown that difference be-
tween the effective initial conditions and the real ones has the second order in gradients of the hydro-
dynamic variables. The obtained effective initial conditions generalize results by Grad, obtained by him
for a particular case of the Maxwellian molecules.

Keywords: the functional hypothesis, hydrodynamic equations, effective initial conditions, Boltzmann
kinetic equation.

IIpobsema epeKTHBHUX NMOYATKOBHX YMOB 10 PiBHAHB TiAPOAMHAMIKH JOCTIIKY€EThCS ISl PO3-
pifzkeHoro rasy, o oNMCy€eTbesi KiHeTHYHUM piBHAHHAM Boabuvana. Posrasix IpyHTyeThest Ha GyHK-
nioHaJbHil rinoresi boroJsiodoBa, sika Beae A0 y3arajbHeHHs Meroay Yenmena-EHckora mo0ynoBu
PiBHAHD rigpoanHaMiku. BukopucroBywoun mio rinmoresy, BUBOAUTHCS OCHOBHE iHTerpajbHe PiBHIHHSA
Teopii /151 epeKTUBHUX MOYATKOBHX YMOB. P03B’5130K 0/1ep:KaHOT0 PiBHAHHS JAOCTIIKY€ETHCA /s CTa-
HiB, OJIM3bKHX 10 PiBHOBA’KHOI0, OCKLILKH JMHAMIKA CHCTEMH, 1K OIHCYETbCS HeJiHililHUM piBHAH-
HaAM boabuMana, He miggaeTbes Ha TenepilHii yac anauxisy. Po3p’si3yBaHHS OCHOBHOIO iHTerpajibHO-
ro piBHIHHA Teopii 3BOAUTLCSA 10 PO3B’A3yBaHHA IHTerpaJIbHUX PiBHAHb THIY THX, 10 AKHX BeJe Me-
Tox YenmeHna-EHckora. Ili piBHSIHHSI MOKYTh OyTH HAOJMKEHO PO3B’fI3aHI METOAOM PO3BHHEHHS 3a
nojinomamu CoHina. I[Toka3yerbes, 0 pi3HUUSA MiK e)eKTHBHMMHU MOYATKOBUMHM YMOBaMHU i peajib-
HHMH TI0YATKOBHMH YMOBAMHM Ma€ JPYrWii MOpsAOK 3a rpajieHTaMM TiApoAWHaAMiYHHUX 3MiHHHX.
3Haiineni e()eKTHBHI MOYATKOBI YMOBH Y3arajibHIOIOThL pe3y ibTaTu Ipeaa, oTpuMaHi HUM [JIsi OKpe-
MO0 BHIA/IKY MAKCBEJiBCbKHX MOJIEKY.I.

KorouoBi cioBa: QyHKUiOHaNbHA TiNOTE3a, PIBHAHHA TiPOJUHAMIKH, e()EKTUBHI ITOYATKOBI YMOBH,
KiHEeTHYHE piBHAHHS bonbiiMana.

IIpodsema 3¢ (PeKTHBHBIX HAYAJIBLHBIX YCJOBHIl K YyPABHEHHMSIM IHIAPOJUHAMUKH HCCJIEAYyeTCS
AJIS Pa3pesKeHHOI0 raza, KOTOPbIii onuchiBaeTcss KHHeTHYeCKMM ypaBHeHueM Bboubnmana. Pacemor-
peHUe OCHOBBIBaeTCsl Ha (PDYHKIMOHAJIbHOI runortese boro/o0oBa, koTopas BeaeT K 00001eHUI0 Me-
Tona YenmeHa-JHCKOra NMOCTPOECHUS YPaBHeHWi ruapoauHaMuku. Mcmonn3ysi 3Ty rumoresy, BbIBO-
JAUTCSl OCHOBHOE HHTerpajibHOe YpaBHeHHEe TeopuH 1151 3P (PpeKTHBHBIX HAYAILHBIX YC/I0BUi. Pemenne
MOJIy4eHHOT0 YPaBHEHHUs HcCJIedyeTcsl AJIsl COCTOSTHU, OIM3KHX K PABHOBECHOMY, MOCKOJIbKY THHA-
MHKA CHCTeMbl, OMHChbIBaeMasi HeJIMHeHHbIM ypaBHeHHeM BoabnMaHa, He mojjgaeTcsi B HacTosIee
BpeMs aHaju3y. PelieHne 0CHOBHOIO ypaBHeHHs TEOPHH CBOAHTCH K PEIICHHI0 HHTErPAIbHBIX ypaB-
HEHMIl THIIA TeX, K KOTOPLIM BeieT MeTo YenmeHa-DHCKOra. JTH HHTErpajibHble YPABHEHHs MOIYT
ObITH NPUOJIMIKEHHO PellleHbl MEeTOA0M pa3Jio:keHus 0 nojauHoMaMm Conuna. [lokasbiBaercs, 4To pa3-
HOCTb MekAY 3(QeKTHBHLIMH HAYAIbHBIMHM YCJIOBHAMHU U PeaJbHbIMM HAYAJIbHBIMH YCJIOBHSIMH
HMeeT BTOPOIl MOPSIAOK MO IPaJHeHTaM I'MAPOAMHAMHYECKHX NepeMeHHbIX. Halinennble 3¢pdexTusn-
Hble HaYaJIbHbIE YCI0BHsI 00001al0T pe3yJbTaThl I'p3ga, moyuyeHHbIe MM JJISl YACTHOTO cIydasi MaK-
CBEJJIOBCKHX MOJIEKY.I.

KonaioueBble ciioBa: QyHKIIMOHAIBHAS THIIOTE3a, YPAaBHEHMS THIPOJUHAMUKH, () (EKTUBHBIE HAYAIb-
HBIE yCIIOBHUS, KHHETHIECKOe ypaBHeHHE bombpIvana.
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1. Introduction

The problem of deriving hydrodynamic equations taking into account dissipative
processes from the Boltzmann kinetic equation for one-particle distribution function (DF)
f,(x,t) was discussed by Boltzmann and Lorentz immediately after the equation

derivation. Now this problem is solved by the Chapman-Enskog method in which a
normal solution of the kinetic equation is investigated, that is a functional f (X,C(t)) of

hydrodynamic variables as functions of coordinates C,(X,t) [1]. The concept of normal

solution of the Boltzmann equation was introduced by Hilbert in his pioneering paper [2].

Bogolyubov made a decisive contribution to the understanding of this idea in his
method of the reduced description [3]. He formulated the idea of the presence of a
sequence of stages with decreasing number of parameters describing the system
completely in the evolution of the system. In particular, the hydrodynamic description of
the system is possible after time rt, that has order of the free path time. In the

Bogolyubov theory the Cauchy problem solution for the kinetic equation f,(X,t,f;)
(f,(x,t=0,f,)=1f (X)) and hydrodynamic variables C,(X,t,f;) as averages taken with
DF fp(X,t,fO) are introduced. Next, asymptotic values of these functions f:f)(x,t,fo),
Ct)(x,t,fo) are considered and the above-mentioned functional £, (x,C) is defined by the
formula £57(x,t,£)) =1, (x,(™(t,f,)). It is assumed that the functional f,(x,¢) does not

depend on the initial DF f,(x) and DF f (x,((t,f;)) is an exact solution of the ki-

netic equation. The last ideas express the content of the Bogolyubov functional hypothe-
sis. For functions Cf:) (X,t,f,) one obtains hydrodynamic equations, solution of which has

a physical meaning for t> 1, but allows continuations for times t, >t >0. This intro-

duces quantities CL”(X,O,fO) that are called the effective initial conditions (EIC) (con-
trary to true ones C,(X,0,f,) # CL”(X, 0,f,)).

By this way the Bogolyubov functional hypothesis [3] leads to the problem of calcu-
lating of the EIC. The detailed investigation of this problem for the Boltzmann equation
was conducted by Grad [4] as the problem of the initial layer. This terminology reflects
the thought that the normal solution of the Boltzmann equation does not describe the tran-
sition period t, >t>0 adequately (see discussion of the problem in [5] (p. 122) and in
[6] (p. 254)). Bogolyubov discussed the problem in paper [7] with application to the cal-
culation of long-time asymptotics of time correlation functions. Clearly, this problem can
be discussed in a general theory of nonequilibriun processes based on the Liouville
equation. One can find a review of the Bogolyubov reduced description method with
calculation of the EIC for some cases and related applications in book [8].

In the present paper the problem is investigated on the basis of the Bogolyubov func-
tional hypothesis for states close to the equilibrium. As usual in hydrodynamics gradients
of hydrodynamic variables are considered as small quantities estimated by the for-
mula d®/ OXp, 0%, G, (X) ~ g°(g=I1/L where | is a free path, L is a characteristic length

of distribution of C (X) in the space). Preliminary results of the investigation were pre-
sented at the Ukrainian Mathematical Congress (Kyiv, 2009).
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To the problem of calculation of the effective initial conditions for hydrodynamic equations

In the Grad’s paper [4] the Boltzmann kinetic equation was analyzed following to
Hilbert. He considered this equation as a singularly perturbed integro-differential equa-
tion with using various time scales (the collision integral was assumed to be proportional
to a big parameter). In the Bogolyubov reduced description method, based on the func-
tional hypothesis, using of time scales is not necessary that is an advantage of this
method.

The present paper plan is as follows. In the Sec. 2 basic integral equation for the
EIC is derived for a general nonlinear case. In the Sec. 3 the basic integral equation is
transformed for states close to the equilibrium. In the Sec. 4 the basic integral equation
close to the equilibrium is solved in the perturbation theory in gradients.

2. Basic integral equation of the theory
The Boltzmann kinetic equation for a rarefied gas

of, (1) _ p, 8, (6D

——+1 (f(x,1)),

T et D) )
is considered with standard properties
J‘d3pqpp|p(f):0; Cppi C0p=8p5p2/2m, Cnpzpn, Q4p:m. )
p _(p-mv)’
I (w(§)=0; W SR —

L(W(E)) O

éu: <t30:-|-, &n:Un, §4:GEnm (3)

The property (2) of the collision integral 1 (f) means that at collisions of system parti-

cles the conservation laws of energy, momentum and number of particles hold. The prop-
erty (3) shows that the Maxwell distribution is the equilibrium solution of the Boltzmann
equation.

Hydrodynamic states of the system are investigated on the basis of the Bogolyubov
functional hypothesis

fp(xat)Tto)fp(xaC(t’fO)): fpo(x) Efp(X,t :0) (4)
where hydrodynamic variables are defined by the formulas
Id3 pf,(%,0)C, =C,(0);  C.(0): LX) =e(X), C,(X)=m(X), C,(X)=a(X) (5)

(e(x), m,(X), o(X) are densities of energy, momentum and mass of the system; here and
hereafter asymptotic hydrodynamic variables Qij’(x,t,fo) are denoted by &, (x,t.f,)).

Formula (4) describes the DF structure of the system at long times when it becomes a
functional of additive motion integrals C,(X,t,f,). The functional does not depend on the

initial DF f;(X) . Instead of independent variables C,(X,t,f;), new variables &, (X,t,f;)

0. s(x)=3W+%c(x)o<x)% 7,(X) = (), (X) )

2
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are widely used (T (X), v,(X) are temperature and mass velocity of the gas). This allows

introducing new DF f »(X,&) defined by relations

fo(x,8)=f,(x5(&) [dpF,(68)C,p =, (E(X)) . (7)

According to the basic idea of the Bogolyubov reduced description method DF
f,(X,C(t,f,)) is an exact solution of the kinetic equation (1) at t > 1,

of,(%,8(6.5,)) _ p, I, (X%.E(L 1))
ot m OX

n

+ 1, (G4 5,)) (8)

(fp(x,ﬁ(t,fo)) satisfies the same equation). According to (2) this formula gives hydro-
dynamic equations

oG, (xtfy) 96, (X%.G(L. 1))
ot OX

n

¢, (X.t,£))
ot

L GO =[Eph, 00 P,

= Lu(xaa(t’fo)) (9)

that also are valid for t> 1, (C,,(X,C) are flux densities of the additive motion integrals;
an expression for the functional L, (X,&)is not given here). By virtue of (8), (9) the func-

tional f,(X,C) satisfies the equation

&f (x,8) 0 . " of (X,
_Zj‘d3xr SE(Z(XIQ)) Cuai)l( C)z % p;XX C)+|p(f(x,€))- (10)

Solution of the hydrodynamic equations (9) can be continued for 0 <t <r,. This in-
troduces quantities ,(X,t=0,f;) (&,(x,t =0,f;)) which are called the EIC for equations
(9). Defined by this way solutions C,(x,t,f,) (§,(X,t,f,)) have not physical meaning for
0<t<rt, but they allow investigating the dependence of functions G, (X,t,f;)
(&,(x,t,f))) on f,(x) for t>>1,. After the continuation Eq. (8) is valid for t>0 that

follows from (9), (10).
Let us derive an integral equation for the EIC(X,0,f;) . The functional hypothesis

(4) shows that f (x,t)—f, p(X,(.j(t,fo))tTTUm and the following relation

o of (xt)  of (X, E(t.1))
£,06,6(0,£,)) = £,0(X) + f dtf—p -y

is true. Multiplying this equation by C, after integration over p, with account for kinetic

equation in the forms (1) and (8) and the property (2) of the collision integral, one obtains

3 o 17 3
£, (x,0,£,) = [d Pl (0 2 j dt[d*pp,C,, {F,(LEEE) - T, D} (11)
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To the problem of calculation of the effective initial conditions for hydrodynamic equations

This equation is the basic integral equation for the EIC C (X,0,f;). In order to solve this
equation, one needs the functional f,(x,C) known from the construction of hydrodynam-
ics with the help of the Chapman-Enskog method.

3. The effective initial conditions close to the equilibrium

Integral over t in Eq. (11) is defined by dynamics, described by the nonlinear ki-
netic equation. Therefore, the integral equation (11) analysis is impossible in a general
case and we confine ourselves to the particular case of states close to the equilibrium

£ () =W (&o(X),  &,(X) =& +8E,,(X), BE, () <E;. (12)

In this situation the basic equations of the theory can be linearized (equilibrium variables
Er=¢", £ =0, & =0° do not depend on coordinates). Let us characterize the magni-

tude of deviations 8¢ ,(X) by a small parameter A . Then the initial DF takes the form

w,(©)
aiu ¢

Foo(X) =Wy +3F,, () +O(R%), Wy =W, (&), 8f,(x)=2 8,00 (13)

Now the kinetic equation (1) leads to an equation for DF 8f (x,t) defined by the formula
f,(x,t) =w +8f, (x,t)+O(L%). (14)

This equation can be written in the form

0 .

anp(x,t)z Lof, (x,t),  of,(X,0)=05f,,(X), (15)
where the operator L is introduced by the formula

~ oh ~ ~
th(X) = _%%X)—F Lth(X) s Lohp(x) = J.ds p,M pp’(&o)hp’(x) H

81, (f)
o,

M (&)= (16)

fow(g)

(h,(X) is an arbitrary function).
In the vicinity of the equilibrium all expressions related to hydrodynamics should be
linearized. For hydrodynamic variables &, (X,t,f,) and DF f o (X,E(t,f,)) there are expan-

sions
f‘p(x, &(t,f,)) =w, + Sf;”(x,t) +0O(\%), &, (X.t,f) =& +3&, (x,t)+ oM?). 17
The first order DF &f ;”(X,t) in virtue of (8) and (16) satisfies the equation
ﬁéf“)(x t) = L& (x,t) (18)
P p Wb

with the initial condition
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8F, (X,&)

3g (X',0).
SQH(X,) £E° EJ“(X ) (19)

37 (x,0)=> [d*x
n
Entering here values 6&,(x,0) are the EIC for hydrodynamic equations for parame-
ters 65, (X,t) of the linearized theory.

The basic integral equation for the EIC (11) after linearization takes the form

86, (x,0) = j d* o, (X)C,., Jrai !

X, m ! dt[d*pp,G,, 857 (x,H) = 3f, (x.)} . (20)

Nonlinear relations (6) connecting hydrodynamic variables C,(X) and &, (X) taking into

account expressions (7) and (17) give
[d>paft (x,byg,, =85, (x.1),  [d*pofl (x,1)E,, =8, () 1)
where the notations

2m mT° 1
:3008;3_?’ E—*nngpn’ é4p:m (22)

are introduced. According to (2), (21), and (22) variables 6§ (X,0), 6C,(X,0) are linearly
connected. Therefore, Eq. (20) after substitution ¢, — &, is true for variables 8¢, (X,0).

E—‘up : E~‘0 p

Kinetic equations (15) and (19) describe time evolution of functions 6f,(X,t), 3f ,(f)(x,t)

and transform equation (20) in the form
.01 N .
8,,(x,0) = [ d” pof (), + lim ——— [dpp &, (L-2) ' 48F,, (0 =3F (X 0)} . (24)

Here before taking the integral over variable t it was regularized according to Abel to

avoid complications connected the existence of . Integral equation (24) is a final form
of the basic integral equation for the EIC 8§ (X,0) for states close to the equilibrium. It

should be solved taking into account the expression (19) for DF of g”(X,O). Eq. (24) is
true for an arbitrary initial state of the system described by DF  6f ;(X) but we restrict

ourselves to the case (13).

4. Solution of the basic integral equation for states close to the equilibrium

The integral equation (24) assumes that hydrodynamic DF f »(X,&) , entering expres-
sion (19) for of ;”(X,O) , i1s known. In the perturbation theory in small gradients of hy-

drodynamic variables & (X) it has the form

£,x8)=f"x8)+f (x,8)+0(g%);  fV(x8)=w,(E(X),
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To the problem of calculation of the effective initial conditions for hydrodynamic equations

B = w(é(x))[hn.(p)A (00 2 ¢ p.B(&(x))aTix)} L@
p—p-mu(x

where the corresponding small parameter, h (p)=p,p, =5, p’/3 (see, for example, [6]).
Functions A (€), B, (&) are solutions of the integral equations with an additional condition

R(©)hy (PIALE) =-——hy (P): KEPB,(© = p[%—%) (B,(5)e,)=0. (26)

Here integral operator K(&) and average quantity ¢h ) with the Maxwell distribution

I{(é)hp = J.d3 p,K pp’(é)hp’ s Wp (&)Kpp’ (é) = _M pp’ (é)wp’(é) 5 <hp> = jd3 pr (E_,)hp (27)

are introduced (h, is an arbitrary function).
Solution of the integral equation (24) for 6&,(X,0) is found in the form of a series in

gradients assuming that gradients of the initial DF f;(X) are estimated by the parameter g

85, (x,0) = 85" (x,0) + 85" (x,0) + 852 (x,0) +O(g*) . (28)

For the initial state of the system (13), according to (24) and with account for (3) and
(22), in the zero order approximation the formula

8, (x,0) = f d” p&f,(X) = 8E,4(X) (29)

is true. So, in the main approximation the EIC coincide with the real ones.
In view of (16), (25), (27) in the first approximation in gradients Eq. (24) leads to
the expression

.0 1 3 - +
SEJS)(X’O) - glgga_xnﬁj‘d ’ ppnépp[l-o —¢] l{afpo(x) —Sfé )(0)()(’0)} ) (30)

Here it was taken into account that operator L in the approximation of the zero order in
the gradients can be changed by the operator I:0 (see definition (16)). According to (19)

and (25), entering expression (30) DF &f;"”(x,0)=8f () and, therefore,
) -
88, (%,0)=0.
In the second approximation in the gradients, by the analogy with (30), the integral
equation (24) gives
.01 ~ P
86,7 (4,0) = - lim = [0 pp,&,, [, ~¢] '3f, " (x.0). G31)

In view of (19) and (25), in this formula DF &f;™"(x,0) can be written in the form

(32)

SEC (x,0) = W {hn.uo)A & )66"“;(” +pB, (0) L) (X)}
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where dv,,(X), OT,(X) are real initial deviations of the velocity and temperature from
their equilibrium values & (w; =w (£°)). As a result the following expression for the
contribution of the second order to the EIC

080, (X) , 5 OT,(X)

e X,0)=
S (0= A X, X, K ox, O,

(33)

is obtained. Here A, B, are some coefficients, approximate calculation of which will

be given in another paper. The structure of the expression (33) coincides with the result of
investigations by Grad [4].

5. Conclusions

In the present paper the problem of effective initial conditions (the Grad problem of
the initial layer [4, 5]) for hydrodynamic equations is investigated on the basis of the
Boltzmann kinetic equation, which describes states of a nonequilibrium dilute gas. The
problem is formulated here in the terms of the Bogolyubov functional hypothesis. In fact,
the concept of the effective initial conditions is a consequence of an asymptotic character
of hydrodynamic equations that are valid after some transition process starting from an
arbitrary initial state.

Using the functional hypothesis, the basic integral equation for the effective initial
conditions of the theory is obtained. Solution of this equation is investigated for states
close to the equilibrium because the Cauchy problem solution for the nonlinear Boltz-
mann equation cannot be analyzed in the necessary details.

Detailed investigation is conducted for the local Maxwell distribution as an initial
distribution function of the system. Gradients of hydrodynamic variables, entering this
distribution, are assumed to be small quantities. The developed theory generalizes results
obtained by Grad [4]. Obtained here effective initial conditions differ from the real ones
by quantities of the second order in gradients. However, they can be used to compare pre-
dictions of the theory with precision experiments. Among others, it is meant the investi-
gation of a role of the Burnett terms in hydrodynamic equations [1, 5, 6].
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