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HYDRODYNAMIC MODES OF THE LANDAU KINETIC EQUATION IN THE
ABSENCE OF RELAXATION

Hydrodynamics of completely ionized two-component electron-ion plasma is investigated on the
basis of the Landau kinetic equation. The relaxation of component temperatures and velocities is
considered to be finished. The investigation follows the idea of the Bogolyubov functional hypothesis.
The consideration is based on a perturbation theory in small gradients of the reduced description
parameters with additional account of the smallness of the electron-to-ion mass ratio. Hydrodynamic
equations for the reduced description parameters are built taking into account dissipative processes. A
linearized theory in the vicinity of the equilibrium state is developed. Linearized hydrodynamic
equations are obtained. The equation solutions are analyzed. The dispersion laws for the hydrodynamic
modes of the system are obtained up to the second order of the perturbation theory in small wave
vector. The effect of the Landau collision integral on the hydrodynamic modes of the system is
investigated. The results can serve as basis for the investigation of relaxation phenomena in the vicinity
of hydrodynamic states.

Keywords: completely ionized election-ion plasma, Landau kinetic equation, linearized theory,
hydrodynamic equations, hydrodynamic modes.

Ha ocHoBi kiHeTH4yHOro piBHAHHA JIaHaay nocaigxKyeTbes riapoaMHaMika NoBHiCTIO ioHi30BaHOI
JABOKOMIIOHEHTHOI eJeKTPOH-ioHHOI miiasMu. Pesakcanisi mBHAKOCTell Ta TeMmepaTyp KOMIIOHEHT
BBAKAETbCSl 3aBeplIeHO. B oCHOBY po3risigy mnokJgageHo igel0 (yHkHioHaJbHOI rimore3u
BorouawboBa. Po3risg 60asyerbcst Ha Teopii 30ypeHb 3a MAJIMMH I'PAJI€HTAMHI IAPAMETPIiB CKOPOYEHOT 0
omucy 3 J0JATKOBHM YPAaXyBAHHAM MAJIOCTi BiJHONIEHHA Mac eJIeKTpOoHa Ta ioHa. PiBHsaAHH#A
rizpomMHaMikn JJ1s mapaMeTpiB CKOPOYeHOro ONMHCY MOOYIO0BAaHO 3 YpPaxXyBaHHSIM JHCHIATHBHHX
npouecis. Po3BuHyTO J1iHeapu3oBaHy Teopilo B 0Kko0.1i piBHOBaxHOro crany. OTpumaHo JiHeapu3oBaHi
PIBHSIHHSA TiApoaAMHAMiKM, IX pO3B’SI3KH aHaNi3ylTbesl. JucnepceiiiHi 3akoHM 1Js rizpoauHamMivHHX
MO/ CHCTEMH OTPMMAHO 3 TOYHICTIO 0 APYroro MOpsiAKy MaJIoCTi 32 MaJHMM XBHJbOBHM BEKTOPOM.
BuBueno BIIMB iHTerpaiy 3irkHeHs Jlangay Ha rinpoaunamiyni Mmoau cucremu. PesyiabraTtu podoTn
MOKYTb OyTH OCHOBOIO /IIsl BUBUEHHS peJlaKcaliifHUX npoueciB mod/u3y riApoauHaMiyHHX CTaHiB.

KnwuoBi ciioBa: MOBHICTIO i0HI30BaHA EJCKTPOH-IOHHA IUIa3Ma, KiHETHYHE piBHsAHHA Jlannay,
JIiHeapu30BaHa TeOPisi, PIBHSIHHSI TiPOANHAMIKY, TiAPOIMHAMIYHI MOJIH.

Ha ocHoBe kuHeTHuYeckoro ypaBHeHusi Jlamaay wucciaeayercsi ruJApOJIMHAMHKA MOJHOCTHIO
HOHM3UPOBAHHOI IBYXKOMIOHEHTHOW 3JIEKTPOH-MOHHO mJjaa3Mbl. Penakcaunusi ckopocreii u
TeMnepaTyp KOMIIOHEHT CYHMTaeTcsi 3aBeplleHHOW. B 0OCHOBY paccMOTpeHHsl TOJIOKeHA wHjest
¢ynkumnonansHoii runore3sl borosw6osa. PaccMoTpenne fasupyercsi Ha TeOpUM BO3MYIUEHHIl MO
MaJbIM IpajHeHTaM NapaMeTPOB COKPALLEHHOI0 OMUCAHMS € JONMOJHUTEJLHbIM YYe€TOM MAJOCTH
OTHOILIIEHHS] MAacC JeKTPOHA M HOHA. YPAaBHEHUS] IMAPOJUHAMUKHU [JISl MAPAMETPOB COKPALIEHHOTO
ONMHCAHUS MOCTPOEHBbI € y4eTOM JAMCCHNATHBHBIX NpoueccoB. PazBuTa JMHeapu3oBaHHAsi TeopHs B
OKPeCTHOCTH PaBHOBECHOro coctosinus. IlosydyeHbl JiMHeapu30BaHHbIE YPAaBHEHUS] THAPOAUHAMMKH,
HMX pelleHUs] AaHAJU3UPYIOTCS. 3aKOHbI AUCTIEPCHH AJS THAPOAMHAMUYECKHX MO/ CHCTEMbI MOJTy4YeHbl
¢ TOYHOCTHIO /10 BTOPOr0 MOPSAKA MAJOCTH MO MAajJOMy BOJHOBOMY BekTopy. M3ydeHo BJHMsiHUE
HHTerpaja crojkHoBenuii Jlangay Ha ruapoamHamMuyecKue MOJAbI cucTeMbl. Pe3yiabTarbl padoTsl
MOTYT CJY:KHUTh OCHOBOW /IS M3Y4YeHHsI PeIaKCAIMOHHBIX NPOLECCOB BOJM3H THIAPOIHHAMUYECKUX
COCTOSIHUIA.

KiloueBble cJIOBa: IIOJIHOCTBbIO HMOHU3UPOBAHHAsl DJJEKTPOH-UOHHAS IUIa3Ma, KHHETHYECKOe
ypaBHenue JlaHnay, TMHeapru30BaHHAS TEOPUS, YPABHEHHS THAPOIUHAMUKH, THAPOJMHAMHYECKHE MOJIBL.
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1. Introduction

In his famous paper [1] Landau derived a kinetic equation for a completely ionized
gas with Coulomb interaction, which is widely used in the kinetic theory of plasma. On
the basis of the equation, hydrodynamics of completely ionized two-component plasma is
investigated. This paper is concerned with the non-homogenous case where the relaxation
of the component temperatures and velocities is finished. The consideration is based on
the idea of the Bogolyubov functional hypothesis. In our previous papers [2,3] we also
considered the plasma hydrodynamics, but those papers are devoted to the derivation of
the distribution function and the kinetic coefficients of the system.

The aim of the present paper is to build the hydrodynamic modes of the Landau
kinetic equation in the absence of relaxation. Usually, the plasma hydrodynamic modes
are investigated on the basis of the Vlasov kinetic equation, but the collision integral is
omitted there. The investigation of the hydrodynamic modes of a two-component plasma
with taking into account the collision integral cannot be found in the literature. The
problem of investigating the plasma hydrodynamic modes on the basis of the Landau
equation is a model one; nevertheless, it is rather important because it describes the effect
of the collision integral on the hydrodynamic modes. The results of the paper are also
important for obtaining the hydrodynamic modes in the presence of relaxation [4,5].

The paper is organized as follows. In Sec.2 the basic equations of the theory and our
previous results for the distribution functions are given. In Sec.3 hydrodynamic equations
in terms of fluxes are obtained. In Sec.4 linearized hydrodynamic equations are obtained,
and on the basis of these results in Sec.5 the hydrodynamic modes of the system are
obtained.

2. The distribution functions and the basic equations of the theory

The well-known Landau kinetic equation for completely ionized electron-ion plasma
has the form

of,, (x,1) P of,, (X, 1) .
ot m OX

a

L, (f(x,1) (1)

n

where f, (X,t) is the distribution function of the a-th component of the plasma (a, b,

C,... =&1i), |, is the Landau collision integral [1]. The Landau equation is a model

one, but it adequately describes the role of the Coulomb interaction in the system at long
distances. Therefore, it is widely used in the plasma theory.

As is known [6], the reduced description parameters in the one-velocity and one-
temperature hydrodynamics can be chosen as the particle number densities of the
components N, (X,t), the temperature T(X,t) and the velocity v,(X,t) of the system. By

definition, these parameters are introduced as follows:
3 3 3 3 1 2
Ifapd p=n,, nHEZIfappnd p=v,p, ssz_[fapsapd p:EnT+Epo 2)
a a

where 7, and ¢ are the total momentum and energy densities, respectively, p is the total
mass density of the system (p=m,n, + m;n;) and n is the total particle density of the
system (N=n, +N,); g,, = p2/2ma .

The investigation is based on the idea of the Bogolyubov functional hypothesis [6],
which can be written in the form
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Hydrodynamic modes of the Landau kinetic equation in the absence of relaxation

fap (X’t)T%) fap (X’ &(t)) 3)

where the reduced description parameters are denoted as &,: §, =T ,§, =v,, &, =n,

(n=0,n,a). In (3) t, is a time which is much shorter than the subsystem velocity and

temperature relaxation times.
The dependence of the reduced description parameters on the coordinates is
supposed to be weak, so the corresponding small parameter g is introduced:

asgu (X) N

g

1).
OXq +--O%, (g=1) @)

Also we use the additional smallness of the electron-to-ion mass ratio by introducing
the small parameter

o=(m,/m)". (5)

The functions f,, (X, 2’;) are found from (1), (3) up to the first order in the gradients

of the parameters &, :

fuo (x.8)= " + 15 +0(g”). (©)
As usual, the functions f” are Maxwellian ones

(0) _ naB3/2 —
fap = Wa,p—mau , Wap = (2Tcrn—)3/2 eXp (_Bgap ) (B = 1 /T ) (7)

The functions f’ are found in [2,3]. They have the form:

b (S on
f =W, o my {F%Z(g:o +gN (E—Bgap DaTb+

b n

T (3 oT » 0V,
+pn(ga0 +0a (E_Bgapjja_'_hnl (p)gaoa_xl . (8)
where h, (p)=p,p - p’J, / 3 and the coefficients @), 9, gl,, 9., g, are

calculated in the ¢ perturbation theory. They are rather lengthy, that is why they are not
given here; they are given in [2,3]. The results of this section are important for obtaining
the hydrodynamic modes that is the aim of the present paper.
3. Hydrodynamic equations
The hydrodynamic equations are the equations of the form
2%, ()

— =L (x T (EW))- )

According to [7], we should know them in order to obtain the hydrodynamic modes
of the system. From (1) and (2) it can be shown that
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op on on ot

a an n _ nl

de __ 04,
ot OX

n

ot OX ot OX,

n

b b

(10)

where p, is the a -th component mass density (p, =m,n,), w,, is the a -th component

momentum density, t, and g, are the total momentum and energy fluxes, respectively.

The definition of these quantities is

Tr’an:_[fappnd3p5 qlzzv[d3p8ap%fap:

a

p
tnI = Za:jd3 PP, m_; fap .
From (2) and (11) it can be obtained that

1 2
g=¢° +5p02, t, =t +pu,v,, q, =0, +uty +v, [80 +p%),

- - - 0

Ten = Jo T PeVn s Tin =—Jn TPV, Jn =T

where €°, t, Q; are the energy density, momentum flux and energy flux in the
accompanying reference frame, respectively, and ], is the diffusive flux:

t§.=;Id3ppn%fa,p+maw q."=§fd3peap
jn ZI fe,p+meu pnd3 p *

From (10) and (12) it can be obtained, that

80=§nT, Py
2 m

a

a,p+myv *

0 j op;, 0 0 op;

Pe O, On O POy OO O

ot OX, OX, oX, ot oX, oX, oX,
al)n __latr?l _ aL)n 680 __aqs _to %—U ago _ 0 al)n
ot pox O ox ot ox, "ox, " ox, ox,

(11)

(12)

(13)

(14)

Our next step is to obtain hydrodynamic equations from (14). Although above we

used the parameters n,, v

n?

T as the reduced description paremeters, it is more

convenient to use the total mass density p, the dimensionless parameter ¢, the velocity

v, and the temperature T as reduced description parameters [6]; the definition of the

parameter C is

Pe =pC.

(15)

Notice that there is no contradiction here because p and ¢ can be expressed in terms of

n, and vice versa:

me ne
b
m,n, + mn, m m,

p=mn, +mn;, C=

From (14) and (15) it is easy to obtain the hydrodynamic equations:

(16)
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op ov, Op

oac_ 19, oc ov, 1oty ov

n

—~ - P L, > —Vy > U, >
ot oX, oX, ot p OX, OX, ot p OX oX,

-1
oT e’ oe’ oT oe’ o | OV,
N —Y, ~—*t p—¢ -
ot oT oT OX op OX
pc pC n pT n
oq° 0 ° 0]
e O +[‘% j 1 ‘“}. (17)
ac ) . p ox,

The hydrodynamic equations (17) can be simplified. As known [6],

ox, " ox

n

. oT ov, 0vu, 2. 0v ov
C=yj. —k— , tS=pd, M| =L+ —-=§, —2 |-¢5, —= 18
O = ox B PO 11( ox o ox, 3 " ox, J ~On X, (18)
where « is the thermal conductivity of the system, y is an additional kinetic coefficient,
n and { are shear and bulk viscosities, respectively, and p is the pressure. The
substitution of (18) into (17) can simplify the time equations for T and v,, but, for
simplicity, we will make it after the linearization of the theory.

4. Linearized hydrodynamic equations

According to [7], we should linearize the theory in order to investigate the
hydrodynamic modes of the system. The linearized theory is built as follows. The
deviations of the reduced description parameters from their equilibrium values are
assumed to be small:

p=p, +0p, C=C, +0C, T=T,+0T, v, =0V, (19)

where we use the reference frame v, =0, here and in what follows the subscript 0 means
that the quantity is taken at equilibrium. The hydrodynamic equations are written up to
the first order in the small deviations (19). Substituting (18) into (17), we obtain

9p _ ov, asc 1 0gj,

o T ot py ox

b
n

oo, __ 1 [@) @(a_rj asc (o) adp _
ot Po | \OT Jg, OX, ocC Jr, OX, 0P ) OX

C n

0°dv, 0°8v
-1 — (ﬂ + Cj it I ,
OX, OX, 3 OX, 0%,

-1
5T (aa")() (aa"j‘)p o p |2,
P 0~ % T Mo
at ar ) . p ). ox,
0 .
Jfe ) 1 (e, ot 0
oc ) py Lo x, o oxox, | 20)
p

From (6)—(8), (13) and (18) it can be obtained that
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OX, OX,
5 an oT
=T2§Zb‘,{5na( o - 5")}67:42;{5”3(9@ gal)}ax : Q1)

Using (18) and (21), we can express  and « in terms of g}, g, gl,, 9:

N, Z{ (ge’:‘oe - g;\lle )}9 K:Xnemengo _TZZ{gna (glo - gaTn )} (22)

geO a

oT
CIO, p=nT, _an{deO_ g-erO }

Finally, from (16), (20)-(22) and the explicit expressions for g)¢, g, 95, 95, 92
[2,3] we obtain the linearized hydrodynamic equations in the form:

00 . 0d¢
%Z—podlv&)n, EzypA6p+ycA60+yTA6T,

ag—;r =0, Adp + 0L, ASC + 01 AST — %Tdiv&)n ,
v, 5 o8T B B, 68p n, '8y,
ot T ox ox 30X 0, (23)

n n

where the coefficients p,, v,, Y., V1, @,, O, 0, B, Be, B,, M, are calculated in the

o perturbation theory and taken at equilibrium. The electroneutrality condition n,, = zn,,

(z is the ion charge number) is also taken into account during these calculations. The
expressions for the above-mentioned coefficients are

ZG

p0=—nime(5’2+0(0°), o :m—ocNJrO( ), aczaNni6’2+O(6’l),

p
e

27T (5 w0 N(O)j 2T°2 {5 T(0) T<0>}
— _ N = O s
*n 3(“1)(29 Gea % 3(z+1) 2% TO T (<)

y =T ghogt L 0(c*). 1, =-n2Tgls® +O(o).

E

z+1 T
-779."¢*> +O(c’), =—0 +0(o =—+0(c’),
Yr =—2Tg], ()BTme ()che()
T(z+1) N
B, = -~ c'+0(c*), m,=-T’gy"+0(c’) (24)
where g™, g, 9l\”, 9/ are the contribution of the order ¢’ to g}, gl¢, 9/,

9., , respectively, and g.2" is the contribution of the order ' to g .

In what follows the dispersion laws for the hydrodynamic modes of the system are
investigated on the basis of the linearized hydrodynamic equations (23) with the
coefficients (24). To obtain these dispersion laws, we should take the Fourier transform
of equations (23) and analyze the solutions of the obtained equations for the Fourier
components of the reduced description parameters.
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5. Hydrodynamic modes of the system
Let us take the Fourier transform

Eu ()= e e, (xt)d’x, 88, (xt)=(2n)" [e e, (kt)dk (25)

where &, = {p, Un,T,C} . After taking this transform and choosing the reference frame

k= (k, 0, 0) for convenience, we obtain from (23):

op . oc
#Z_Ipokuxk’ Ekz_’}/pkzpk _YCkZCk _YTszk >
a7, 2_. L
6_tk=—(xpk2pk —a.k’c, —o KT, _ETIKUXK’ 8tyk =-n,k’v,,
ov, . . . 4n, ov,
tk =—iB. KT, —iB ke, —iB kp, — 2 k*v,, 6'tk =-n,k*v,, . (26)

We seek the solution of (26) in the form &, (t)=¢&, (0)e™. The general solution is a

superposition of six independent so-called hydrodynamic modes. Each hydrodynamic
mode describes a coherent motion of the six hydrodynamic variables &, . Equations (26)

can be rewritten in the matrix form

S-me @)

where & is the column of &, . The dispersion laws K(k) for the hydrodynamic modes

are found from the equation
det|M —Al|=0. (28)

We seek the solution of (28) in the perturbation theory in the small wave vector k
(k is small because the gradients (4) are small). The perturbation theory in o is

additionally used. Using (24) and the explicit expressions for g¢”, g+, 9., 9.,

g, we obtain the explicit expressions for the dispersion laws from (28):

——— Aok +0(c%k%,K),

7\'12
’ YNOYS
s = AEVA (DB e oy
’ 10 (z+x/§)(z+1)

T(z+1 5(29z + 442
A = tiko M—AW ( ) +0(o’k, 0k, k) (29)

3m, 252(2+1)(z+\/§)

25 5 125 T
A(Z):§+1622(4\/§+13Z)’ B(Z):W(ﬁﬂ)’ A oL GO

e is the elementary electric charge and L is the Coulomb logarithm.
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Thus, the hydrodynamic modes of the Landau equation (29) are obtained in the absence
of relaxation. Here the modes A, , describe the evolution of the transversal components of the

velocity v, , the modes A,, are the diffusion and heat modes, and A, are the sound modes

of the system. The modes are obtained up to the second order in the small wave vector with
additional account for the smallness of & .

6. Conclusions

Hydrodynamics of completely ionized two-component plasma is investigated on the
basis of the well-known Landau equation. The non-homogenous case with the finished
relaxation of the component temperature and velocity is investigated. The consideration is
based on the idea of the Bogolyubov functional hypothesis. This paper is concerned with
the investigation of the hydrodynamic modes of the system.

The dispersion laws of the hydrodynamic modes of the system are obtained in the
small wave vector perturbation theory with additional account for the small electron-to-
ion mass ratio.

The results for the plasma modes described by the Vlasov kinetic equation are well-
known (plasma oscillations). These results cannot be obtained by our approach, which is
based on the Landau kinetic equation. The reason is that the Landau equation does not
involve a self-consistent field. But, in contrast to the Vlasov kinetic equation, it takes into
account the collision integral. Thus, although the problem under consideration is a model
one, our results are rather important because they describe the effect of the Landau
collision integral on the modes of the system.

The results of the paper are obtained for the case where the relaxation of the
component temperature and velocity is finished; nevertheless they are also important for
the investigation of the relaxation in the vicinity of the hydrodynamic state [8] as they are
the results of the principal order of a perturbation theory in small relaxation parameters.
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