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THERMODYNAMIC STABILITY OF 2-DIMENSIONAL MODELS
IN THE VICINITY OF A CRITICAL POINT

The properties of two-dimensional exactly solvable Lieb and Baxter models in the critical region
are considered on the base of thermodynamical method developed for investigation of critical state of
one-component system. From the point of view of the thermodynamic stability the behaviour of the
whole set of thermodynamic characteristics of stability for these models is analyzed and the types of
their critical behaviour are determined. The reasons for the violation of the scaling law hypothesis and
the universality hypothesis for the models are clarified. For ferroelectric Lieb model it is ascertained
that in subcritical and supercritical areas two types of critical behavior, different in fluctuation growth
of energy and electric polarization are realized. This results in symmetry breaking of subcritical and
supercritical indices, in essentially different behaviour of the same thermodynamic parameters on each
side of a critical point. Baxter model is characterized by the same two types of critical behaviour, one of
which is also presented in three cases, depending on a slope of phase equilibrium curve at the critical
point. The type of the behaviour is varying dependently on the interaction parameter of the model.

Keywords: scaling law hypothesis, universality hypothesis, stability coefficients, critical state.

3a 10moMOro0 TepMOANHAMIYHOIO0 METOAY A0CTiI’KEeHHS] KPpUTHYHOI0 CTAHY OJIHOKOMIIOHEHTHHUX
CHCTEM BHBYAIOTHCSI KPUTHYHI BJIACTHBOCTI JBOBHMIPHMX TOYHO PO3B’s3yBaHux Monesei Jlida i
Bexcrepa. IIpoananizoBaHo mNOBeIiHKY NOBHOI0 KOMILUIEKCY TE€PMOAUHAMIYHHUX XapPaKTEPUCTHK
cTilikocTi HMX Mojeseii 3 TOYKkM 30py Teopili TepmoamHamiyHOi cTiiikocTi il BH3HAYeHO THIH iX
KPUTHYHOI NOBeliHKHM. 3’fCOBAHO NPHYMHHM NOPYUICEHHA B LHUX MOAeJAX rimore3 moaidHocTi it
yHiBepcaibHOCTi. BcTaHoBieHO, 10 B cerHeroejieKTpuyHin mogeni Jlida B goxkpuruuHiii Ta
3aKPUTHYHINA 00JacTsX peasi3ylOThesl JBa THIM KPUTUYHOI NMOBEMIHKH, Pi3Hi 3a piBHeM pPO3BHUTKY
¢aykryaniii eHeprii Ta ejJeKTPHYHOI moJsipu3auii, 0 NPU3BOAUTHL A0 NMOPYLIEHHS CHUMETPii Mik
JOKPHUTHYHUMHU i 3aKPHTHYHUMH NOKA3HHKAMH, 10 NPUHIIMIIOBO Pi3HOI MOBEAIHKH OJHMX if THX caMHX
TepMOAMHAMIYHMX BeJIMYHH 1O o0uaBa Ooku Bix KkpurnyHoi ToukH. Moneabr bBekcrepa
XapaKTepu3yeThCsl THMH CAMHMH JBOMA THNAMHM KPHTHYHOI MOBEAIHKM, OJUH 3 SKHX A0 TOr0 K
NMpeACTABIEHHIi TPbOMa MOJIMBOCTAMHU — B 3aJIe’KHOCTI Big Haxwiay Jinii ¢a3oBoi piBHOBaru B
KPUTHYHIN To4ni. Tul noBeAiHKU 3MIHIOEThCH 3aJI€2KHO Bil IapamMeTpa B3aeMOJIi Mojeti.

KurouoBi ciioBa: rinoresa nmofiGHOCTI, rinore3a yHiBepcaIbHOCTI, KOSQILIEHTH CTIHKOCTI, KPUTHIHUH
CTaH.

IIpy noMomu TepMOAMHAMMYECKOI0 METOJAa MCCJIE0BAHUS KPUTHYECKOro COCTOSTHHS
OJHOKOMIIOHEHTHBIX CHCTEM M3y4al0Tcs KpPHUTHYECKHE CBOICTBA JBYMEPHBIX TOYHO pellaeMbIX
mogeiieii JInda n bakcrepa. Ilpoanan3npoBaHo NoBeieHUe MOTHOI0 KOMILJIEKCa TePMOAMHAMUYECKHX
XapaKTePUCTHK YCTOHYMBOCTH JTHX Mojejeili ¢ TOYKM 3peHHsl TeOpHMM TepMOAHHAMHYecKOil
YCTOHYHMBOCTH H ONpeeeHbl THIIBI UX KPUTHYECKOro NoBeAeHUsl. BbIsiCHEeHbI NPUYUHBI HAPYILIEHHUs B
3THX MOJeJSIX THNOTe3 MOA00MsI W YHHBEPCAJbHOCTH. YCTAHOBJIEHO, YTO B CerHeTO3JIeKTPHYECKOil
Mogenu JInba B JOKPHUTHYECKOH M 3aKPUTHYECKOH 00JIACTH pealu3ylTcs ABAa THNA KPHUTHYECKOro
NOBE/ICHNS, Pa3HbIe 110 YPOBHIO PAa3BUTHA (PJIYKTyalUil JHEPTUU H YJICKTPHYECKON MOIAPHU3ALHUH, YTO
NPUBOJUT K HAPYIIEHHI0 CHMMETPHH MEKAY JOKPHTHYECKHMHU U 3aKPHUTHYECKHUMH NMOKa3aTeIAMH, K
NPMHIUNHATBHO PA3HOMY IOBeIeHUI0 OJHUX M TeX Ke TePMOJAMHAMHYECKHX BeJHYHH 10 00€e CTOPOHbI
OT KPpUTHYeCKOii Toukn. Moaens BakcTepa xapakTepusyercsi TeMH Ke IBYMs THIIAMH KPUTHYECKOI0
NoBe/JeHNs], OIHH U3 KOTOPBIX K TOMY Ke MpeJACTaBJeH TPpeMsl BO3MOKHOCTSIMH — B 3aBHCHMOCTH OT
HAKJIOHA JHHUH ¢(a30BOro paBHOBecHsl B KPUTHYecKOil Toukn. TuI moBeJeHHs1 M3MeHsieTCSl B
3aBHCHMOCTH OT IapaMeTpa B3aHMOAeHCTBHS MOIeJIH.

KnroueBble ciioBa: rumnoresa 1mogoousi, TMIoTe3a YHHUBEPCAIBHOCTH, KOA()(HUINEHTH YCTOWYNBOCTH,
KPUTHYECKOE COCTOSHHUE.
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1. Introduction

Description of the behaviour of thermodynamic parameters near the critical points is
one of the basic problems of the critical state theory. Direct statistical calculations are
unavailable at present because of impossibility of accounting exactly for the interactions
and for the fluctuations which are large near the critical point. So, solving the problem by
the methods of statistical physics one considers either the simplest models, for which the
partition function can be evaluated exactly, or an approximate solution of the problem.

At the first approach the exactly solvable two-dimensional models (the Ising, Lieb,
Baxter models and others [1]) are of great importance. The second approach is connected
mainly with examination of the asymptotic behaviour of thermodynamic parameters near
the critical points, as well as with the development of the scaling law hypothesis, the
universality hypothesis and the renormalization group approximation and has appreciably
succeeded. Indeed, the large class of real systems and models satisfies the scaling law and
the universality hypotheses. The existence of real systems and exactly solvable two-
dimensional models, for which these hypotheses are violated, is also remarkable. The six-
vertex ferroelectric Lieb model and the eight-vertex Baxter model [1] are such examples.

The Lieb and Baxter models give a reasonable fit to real ferroelectrics
(antiferroelectrics) and ferromagnets (antiferromagnets). The aim of this paper is to
examine the critical properties of these models on the base of the thermodynamical
method of investigation of the critical state [2, 3]. The method is based on the
constructive critical state definition and the critical state stability conditions and describes
a variety of critical state nature manifestations. On the basis of investigation of the whole
set of stability characteristics of a system (adiabatic (the AP’s) and isodynamic (the IP’s)
parameters [4,5]) method establishes four alternative types of critical behaviour for
thermodynamic quantities, classified by the value of adiabatic stability coefficients (the

ASC’s) and the critical slope K of the phase equilibrium curve.

2. The ferroelectric 6-vertex Lieb model

There are a lot of crystals with the hydrogen bonds in the nature [6]. The ions in
such crystals must obey the ice rule. The bonds between atoms via hydrogen ions form
the electric dipoles. The partition function of such a system is defined by the expression

Z= Zexp[— (e, +nye, +...+n.g )/KT], (1)

where the summation should be carried out over all the configurations of the hydrogen
ions allowed by the ice rule, €; is the energy of I -type vertex configuration and N, is the

number of | -type vertices in the lattice.
There are three sorts of the ice models which have been solved by E. H. Lieb [7, 8].

One of them can describe KH,PO, (KDP), which is ordered ferroelectrically at low
temperatures under the appropriate choice of €, €,,...,&,. For the square lattice this

choice is
€=¢,=0, g,=¢,=¢,=¢,>0. (2)

The ice models as models of critical phenomena have some unusual properties: the
ferroelectric state at these models is frozen (i.e. there is complete ordering even at the
non-zero temperature). This symmetry can be broken by imposition of external field.
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Thermodynamic stability of 2-dimensional models in the vicinity of a critical point

The expression for the free energy per lattice point in the presence of the nonzero
external field is given by

f=g —EP—K(T-T.)NI-P?)2+A[T -T.)T.F>, 3)

where E is electric field, P is electric polarization [1], and A =-0.2122064-KT_; k

is Boltzmann constant, T, is critical temperature. The critical equation of state is

expressed in the form

o[BI -T)L, if [E[<k(T-T,) .
sign(E) otherwise. )
It corresponds to the phase diagram in Fig. 1.

E It is necessary to emphasize that the
ice model allows the investigation on
the basis of the thermodynamic

| method [2, 3]. In this case the tempe-

rature T and the electric intensity E
stand for the generalized thermody-
namic forces. The conjugated
I generalized thermodynamic variables
are the entropy S and the electric

polarization P . Thus, the adiabatic

parameters for given model are

Fig. 1. The phase di [1] and quasispinodal
T vl (0T/2S),, (0T/cP); . (0E/2P),,

and the isodynamic parameters are (6T/0S )., (6T/0P)., (FE/OP).. As T =T, the

free energy per lattice point coincides with expression (3), and as T —T_ the free

energy equals simply to & —EP. Consequently, the heat capacity is finite in the

subcritical region and its critical index is o'=0. Both the phases I and II are quite
ordered and then differ from each other only by a direction of the electric polarization
vector (P ==1). This corresponds to the second critical behaviour type according to the
thermodynamic classification of critical behaviour types of one-component systems [2]:

(aT /0S )P =T/C, #{0,00}, (GE/ GP)S =0. Thus, the critical slope of the equilibrium
curve of the phases I and II (Fig. 1) equals to zero, K, =0.

As we can see from Eq. (3), in the supercritical region (T — TC+) the heat capacity
diverges as [(T -T, )/Tc ]_1/2 , .. the thermic ASC is (aT/GS )P =C(T-T,)/T, . Letus

approach to the critical point from the supercritical region along the curve of the first-
kind phase transition I-III and II-III (Fig. 1). It is known that at least one of the jumps
AP, AS must exist along these curves. Le., on the transition curve

AP =P, -P, =1-E/[k(T -T.)]=0. (5)

At the critical point AP =0.
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The entropy jump can be determined from the known behaviour of the heat capacity.
For the phase I we have a'=0, i.e. C, = const. Consequently, the entropy of the phase I

is S,=C,/InT +const. For the phase III we have a=1/2, ie.
Sy =C,4/T.(T =T,) +const . Then, for the jump we have

AS =S, -5, =C, InT -C,T.(T —T,) + const. (6)

At the critical point AS = const # {0,00} . Such a behaviour of the entropy is connected

with the divergence of the heat capacity in the supercritical region.

The analogous results can be obtained for phases II-1II as well. For the equilibrium
line I-II we have AP =2, AS =0. At the critical point AP =0.

Thus, the found values of the jumps correspond to the results of papers [2, 3], and
the point T, is critical for the phase equilibrium line I-II, for the line I-III and for the line
II-1II. So, point C in the phase diagram (Fig. 1) is the point of convergence of three phase
equilibrium lines. The possibility of such a point has been predicted in papers [2, 3].

Let us analyze the behaviour of the whole set of the system stability characteristics.
Using Egs. (3) and (4), we can obtain the following expressions for the AP’s and the IP’s:

A _cfm-T)T (5_Ej __ KT TS
oS J, che oP)s kP*+CJT.(T-T,)’
aT) _ KkP(T-T) (g) ~ T-T.

oP)s KPP +CT.(T-T.)’ 3 )e kP +CJT.(T-T.)
OE ot
— | =k(T-T), —| =-(T-T1)/P,
=] k- &) -y

(7

where C = —4TC2/ (3A)= 6.2831908- T, /k . The critical slope of phase equilibrium

curve equals Kcm =KP for the line I-1ll and K, = —kP for II-IIL. At T = T." all the
AP’s and the IP’s tend to zero.

According to the critical behaviour classification [2], at K_#{0,00} and
ASC’s— oo we have the fourth type of the critical behaviour, and two phase equilibrium
lines with different critical slopes Kc(l’z) =+kP converge at the critical point. This

behaviour type is the most fluctuating one (the fluctuations of energy and polarization

(AH )2, (AF’)2 — 00 ). Approaching to the critical point from the subcritical region (along
the phase equilibrium line I-II with the slope K, =0), the second type of critical

behaviour is realized (the fluctuations of energy (AH )2 is finite and the fluctuations of

polarization (AP)2 —> ).

As it is known, stability characteristics are inversely proportional to fluctuations of
external parameters of the system. At the continuous transitions [5] determinant of
stability D and stability coefficients (the SC’s) pass finite minima, that corresponds to
the growth of fluctuations. The locus of these minima is curve of supercritical transitions

21



Thermodynamic stability of 2-dimensional models in the vicinity of a critical point

(the lowered stability curve or quasispinodal). The limit case of these continuous
transitions, when fluctuations in the system are at the high and D and the SC’s pass zero
minima, is the critical state. The critical point is also the limit point of some first-kind
transition (the limit point of phase equilibrium curve). If the phase equilibrium curve and
curve of supercritical transitions pass into each other continuously, i.e. the slopes of these
curves are the same, then the tricritical point is observed, where three phases become
identical: two subcritical phases and supercritical one.
On the quasispinodal the next condition is fulfilled [9]:

dD:(@j dsS +(@j dx=0. (®)
oS Jp oP )

Using results (7) to find the determinant of stability for Lieb model and investigating
where condition (8) is fulfilled, we obtain E =0 [10]. This is equation of quasispinodal
(the gray line in Fig. 1) for ferroelectric Lieb model. So, the maximal growth of
fluctuations is observed under zero electric field. The critical slope of the subcritical
phase equilibrium curve is K, =0. It means that for this model the case of continuous

passage of the equilibrium curve into the lowered stability curve is realized because of the
same critical slopes.

Thus, the violation of the scaling law hypothesis in the Lieb model can be explained
by the fact that the model corresponds to two different critical behaviour types: at

T — T, the second type and at T —T_" the fourth type is fulfilled. Besides, the critical

point of the Lieb model is the critical point of a special type with the convergence of three
phase equilibrium lines. Moreover, the equilibrium curve continuously passes into the
lowered stability curve.

3. 8-vertex Baxter model
The eight-vertex Baxter model is a generalization of the six-vertex Lieb model [6,
11-13]. The formation of | -type vertex needs the energy €; (where j=1,....8). For

such a model the partition function is given by (1) where the summation is performed
over the eight vertex configurations. Thus, besides the first six vertices coinciding with
the Lieb model there are another two new vertices.

The Baxter model is fitted to describe the critical phenomena in ferroelectrics
(antiferroelectrics). The eight-vertex model can be considered also as two Ising models
with the nearest neighbours interaction (each model is on its sublattice). These sublattices
are connected by means of the four-spin interaction. In this case the model corresponds to
ferromagnets.

The Baxter model has the exact solution only in the absence of an external field.

The ferromagnetic Baxter model. In the case of ferromagnet the adiabatic stability
coefficients get the following asymptotic form:

T Tn
(2 )
as ), oM ),

where t = |T -T, /TC ; W is the interaction parameter, it takes a value from (O, ﬂ:). It is

necessary to note that in absence of the external field the behaviour of the isodynamic

parameters coincides with the behaviour of the adiabatic parameters. When 0 < p < n/ 2
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the heat capacity exponent a is negative, the magnetic susceptibility exponent y takes a
positive value, i.e.

(2o (8 () <
3 )., oM ), oM

and the second type of critical behaviour takes place. At 7/2 <p <157/16 the fourth
type of critical behaviour is realized, the exponent o increases (0 < a <14/15) and the
index y decreases (7/4 >y >14/15), where o<y .

(ﬂj :O,[ﬂj 0 = (ﬂj ~0.
as )., M ) M J

All the parameters in this case tend to zero, but (aH /oM )s and (8H /oM )T tend to zero
faster than other parameters. The value of the critical slope is K =0. The case

w=15m/16 corresponds also to the fourth type of critical behaviour, but a =y =14/15
and all the parameters tend to zero according to the same law, the critical slope is
K. #{0,00}. At 151/16 <p <7 the fourth type of critical behaviour is also observed,
14/15<a <1 and 14/15> v >7/8, and everywhere o> y. All the parameters tend to
zero, but (8T /0S )M and (8T /0S )H tend to zero faster than other parameters. The value
of the critical slope is K =o0. The corresponding plots of ASC’s for various [ are
presented in Figs. 2, 3.

Thus, the performed analysis enables to reveal that at 0 <p < n/ 2 the critical
behaviour of the Baxter model corresponds to the second type according to the
thermodynamic classification [2, 3] with K, =0, and at /2 < p < 7 it corresponds to
the fourth type which is realized by three possibilities for the critical slope
(K, =0,K, #{0,0},K, =) depending on the value of p, varying within the

mentioned interval.
The ferroelectric Baxter model. In the case of the ferroelectric Baxter model the
stability coefficients can be written in the form:

&) (E)
2s J, oP ),

At O<p< n/2, as in the previous case, o is negative and 7y 1is positive. So
(0T/eS), =0, (6E/oP), =0 =(T/dP);=0, K, =0 and the second type of
critical behaviour is fulfilled. At 11'/2 <u<m the exponent o takes positive values
O<oa<l,but a is less than v, 3/2>vy>1 and the fourth type of critical behaviour

with K, =0 is realized.
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Thermodynamic stability of 2-dimensional models in the vicinity of a critical point

(AT/0S)m
35r

-3 -2 -1 0 1 2 3

Fig. 2. The temperature dependence for reduced thermic coefficient of stability

(8H/OM)s
35p

L I I I I ot
-3 -2 -1 0 1 2 3

Fig. 3. The temperature dependence for reduced magnetic coefficient of stability

It is necessary to emphasize the fact that for real ferromagnets and ferroelectrics the
critical behaviour types are also the second and the fourth ones.

4. Conclusions

Thus, in the paper the consideration of the thermodynamic stability of the Lieb and
Baxter models by the method of Refs. [2, 3] is performed. The asymptotic expressions for
the whole set of the stability characteristics are determined. The reasons for the violation
of the scaling law and universality hypotheses in the models are clarified. So, we
determine that the second and the fourth type of critical behaviour take place in the
subcritical and in the supercritical region of the Lieb model, correspondingly. The
violation of the scaling law hypothesis in the ferroelectric Lieb model can be explained
just by difference of the behaviour types. It has been also ascertained that three phase
equilibrium lines with different critical slopes converge at the critical point of the model.
A possibility of the existence of such a type of the critical point has been predicted in

24



A. N. Galdina

papers [2, 3]. The equation of quasispinodal is obtained and it is shown that the
equilibrium curve continuously passes into the lowered stability curve in this model.

In the Baxter model the realization of the second and the fourth type of critical
behaviour also occurs, moreover, the fourth type is represented by three possibilities —
with three different critical slopes of the phase equilibrium line. The reason for the
violation of the universality hypothesis is that each of the mentioned types (the second

type, the fourth type with K_ =0, the fourth type with K_ # {0, o} and the fourth type

with K, =) is connected either to the certain value or the continuous range of the
interaction parameter . It is interesting to emphasize that in each model while one

hypothesis is violated, another nevertheless holds. In addition, the special case of the
eight-vertex Baxter model, where the universality hypothesis is violated, is the Lieb
model (L =0), in which the universality hypothesis is satisfied, but the scaling law

hypothesis is violated, and the Ising model (p =m/2), where both hypotheses are
fulfilled.
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