ISSN 2408-9419. BicHuk [IHinponeTpoBcbKoro yHiBepcurteTy. Cepisi «®Pisuka. PapgioenektpoHika». Ne1. Bun. 21. T.22, 2014
Visnik Dnipropetrovs’kogo universitetu. Seria Fizika, radioelektronika. No 1. Issue 21. V. 22, 2014

UDC 537.874.6
M. E. Kaliberda, S. A. Pogarsky
V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

WAVE DIFFRACTION BY SEMI-INFINITE PERIODICAL MULTI-ELEMENT
KNIFE-TYPE STRIP GRATING OF FRACTALS

The diffraction problem for the H -polarized wave by a semi-infinite knife-type grating
which consists of fractals is considered. The grating is the semi-infinite system of identical
layers. Every layer is a finite-element plane fractal strip grating based on the pre-Cantor set in
turn. The operator method is used for solving the problem. Nonlinear operator equation
relatively an unknown reflection operator is obtained. The regularization procedure which
connected with the elimination of singularities is carried out. The scattered field can be
represented as a superposition of field of cylindrical waves which is originated as a result of
scattering by the semi-infinite grating end and plane waves corresponding to infinite periodical
grating. The magnitude of the reflection coefficient of plane waves of the gratings under
consideration and directional patterns of cylindrical waves are presented.

Keywords: semi-infinite grating, operator method, successive over-relaxation method,
regularization procedure.

Po3rasinyrto 3apauy audpakuii H -MOJISIPU30BAHOT XBMJi Ha HaniBHeCKiHYeHHii
nepionnuHiii HoxoBil pemiTui 3 gpakranis. PemiTka siBjasie c00010 HaniBHeCKiHYEHHY CHCTEeMY
ogHakoBux mapis. Kosxken map, y cBo0 4epry, € cKiHUYeHHOeJileMeHTHa IJocka ¢paKTajibHa
CTpiYKOBa pemliTKa HA OCHOBi NMepeJKAHTOPOBOI MHOXKUHH. JlJsi PO3B’SI3aHHSA 3aCTOCOBYETHCS
onmeparopuuii meroa. OTpumaHo HediHiiiHe omepaTopHe PpiBHSHHA BiAHOCHO HeBiZOMOroO
onepatopa BinoutTa. IlpoBegeHo mpoueaypy iioro peryasipusanii, sika mnoB’sizaHa 3
BHKJIIOYEHHAM oco0iuBocTeii. Po3ciiHe mose Mo)xHa NpeICTaBUTH y BHIJAAL cynmepmo3uumil
NOJIiB HUWJIIHAPHYHHX XBHJIb, CTBOPEGHHX KPA€M HANIBHECKIHYEHHOI CTPYKTYPH Ta ILIOCKHX
XBHJIb, 10 BiANOBial0Th HecKiHYeHHil nepioanyniii pemirui. HaBeneni 3HauenHs koedinienra
BiIOUTTA IUVIOCKMX XBHJb PO3IJIAHYTHX pelliTOK Ta JiarpaMu CHPSIMOBAHOCTI LMJIiHAPUMYHHUX
XBHUJIb.

KurouoBi cJjioBa: HamiBHECKIHUEGHHAa pEIIiTKa, OMEPaTOPHUN METON, METOX pelakcamii,
MpoIeaypa peryasapu3amii.

PaccmaTpuBaercs 3anaua audpaxuun H -noasipuzosannoii BoaHb Ha MonyGecKoHeUHO
NepuouYecKol HOKeBOW pemerke u3 ¢pakranos. Pemerka mnpeacraBiasier co0oii
NoJIy0eCKOHEYHYI0 CHCTeMY OJHMHAKOBBIX cjoeB. Kaxkawlii ci0ii, B CBOIO ouepeab, siBJIsieTCS
KOHEYHOJJIEMEHTHOH  IJOCKOH  JIEHTOYHOM ¢ppakranbHoii  pemerkoii Ha  OCHOBe
NPEIKAHTOPOBOr0 MHO:KecTBa. Jlsl pemleHHs NpUMeHsieTcs omepaTopHblii Meron. Iloaydeno
HeJIMHEeifHOe omepaTopHOe ypaBHEHHE OTHOCHTEJBLHO HEH3BECTHOIO ONEpaTopa OTPaskeHHs.
IlpoBenena mpomeaypa ero peryiasipu3aliii, CBS3aHHasi € MCKJIKYEHHEM O0COOCHHOCTEN.
PaccesinHoe moJsie MOKHO NMPeACTABUTHL B BHAe CyNepNO3MIHM MoJell NUJIMHAPHYECKHX BOJIH,
CO3aHHBIX KpaeM TMOJY0eCKOHeYHOH CTPYKTYPhl H IJIOCKHX BOJH, COOTBETCTBYIOIIHX
OeckoHeyHO#i mepuoguyeckoii pemerke. [IpeacraBiensl 3HaYeHUs] KO3PPHUIHEHTA OTPaKEHUS
MJIOCKHX BOJIH paccMaTpPHBaeMbIX pelIeTOK H JHATPAMMBbI HANIPABJIEHHOCTH IUJIMHAPHYECKHX
BOJIH.

KnaroueBbie ciioBa: mosryOecKOHEUHas pelIeTKa, ONEpPaTOPHBIH METOJ, METOJ pelaKCaluH,

mporeaypa perysipu3annm.
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1. Introduction

Knife-type gratings are widely used for designing polarizators, frequency-selective
devices, reflection screens, etc. [1-3]. Among plane diffraction gratings we should mention
special type of gratings, namely, the gratings based on fractals. Such gratings s are
attractive because of their compact size and their multiband property. The fractal gratings
have application in medicine, military technology and cellular systems [4].

It is interesting to study a semi-infinite periodical structure which consisting of
fractal gratings. The model of semi-infinite structure allows describing the field which is
reflected from the end of a real finite grating.

In a large number of papers the semi-finite gratings which consist of cylindrical
scatters are considered. In [5-9] the Wiener-Hopf method was used in supposition of
small cylinder radius and large period as compared to the wavelength. In [10] the Foldy
method is used in the case of Dirichlet boundary conditions. It is supposed that the
transverse size of the scatters is small as compared to the wavelength. In [11] the method
proposed in [10] is developed for the semi-infinite grating of circular cylinder scatters of
arbitrary radius both in the case of Dirichlet and Neumann boundary conditions.

The semi-infinite system of grooves in a perfectly conducting plane is considered in
[12] using an overlapping T-block method. The full field is represented as a sum of fields
scattered by each groove. At a sufficient large distance from the end of the semi-infinite
grating, the coefficients of a sum are replaced by corresponding coefficients of infinite
periodical structure.

In [13-16] the semi-infinite periodical gratings with a single strip on period are
considered. As a rule, diffraction problems for such gratings are solved in assumption of a
single mode current distribution on the strips. The current on the strips are represented as
a sum of current corresponding to the infinite grating and contribution induced by the end
of the grating. The semi-infinite strip grating with small period as compared to the
wavelength is considered in [16]. Using the approximate boundary conditions method the
problem is reduced to the canonical one which is solved with the use of the Sommerfeld-
Maliuzhinets method.

The strict solution of the diffraction problem by different semi-infinite periodical
systems of obstacles is obtained by the operator method [17-23]. The reflected field is
expressed via the reflection operator which is obtained from nonlinear operator equations.

In all papers mentioned above single-element semi-infinite gratings are considered, i.e.
gratings with just a single element on period (strip or cylinder) and the gratings consist of
these single elements placed periodically. In this paper the semi-infinite multi-element
periodical grating will be studied by the operator method. As a single element we choose
multi-element strip gratings based on the pre-Cantor set (fractal gratings). Single elements
are placed in parallel planes one under another forming so-called knife-type grating.

2. The problem statement

Let us place the first multi-element grating in the plane Z=0 so that its center
coincides with the Y- axis. Let us place every next (n+1)th grating in the plane
Z = —nh so that strips were one under another, and denote the distance between ends of a
single-layer grating or its width as 2d . The structure geometry is presented in Fig.1. The
time dependence is assumed to be e et Suppose that from the half-space z >0 the H -
polarized plane wave with spectral function (Fourier amplitude) ((&) incidents on the

formed multi-element knife-type grating. Then single non-zero magnetic component of
the incident field may be represented in the form
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. ® q P a
HE(y2) = 9O explikey — ky()2)dE A7

n=1
where y()=+1-¢%, Rey=0, Imy>0, Cl *B}

k=27/A is the wavenumber. We denote the C * * B l h
Fourier amplitudes of the reflected field and the 2 -l

field between the layers as a(&), C,(¢) and ~ n=3f =%

B, (&) . Then the reflected from the semi-infinite : 2d

grating field may be represented in the form T

H ; (y, Z) = Ja(g) exp(ikfy 4 iky(§)z)d§ , (D Fig. 1. Structures geometry.

Hy(y,2) = [ C, (&)explikey —iky(£)(z +(n—Dh))de

+ TBH (&)explikgy +iky(£)(z +nh))d&, (n—1)h <z <nh.

Let us introduce an integral reflection operator R from the semi-infinite structure

with the kernel function F%(f, ¢) . Then the Fourier amplitude of the reflected field and
(1) may be written in the form

aé) = [R(&,$)a)dg )
H(y,2) = [ [R(&,.0)ag) explikey +iky(£)2)dgds

When we use the operator method we should know the reflection and transmission
operators of a single obstacle. Suppose that we know reflection and transmission
operators r and t of a single multi-element grating which may be obtained by the
method of singular integral equations [24-26]. Then the Fourier amplitudes of the
reflected and transmitted fields may be obtained as follows

0

(@) = [rEOHAOS, (@)@ = [tEOaEHNe,

—00
and

1(¢,¢)=0(c =) =r(&.¢) G)

where &(&) is the Dirac delta function.

3. Operator equations

The Fourier amplitudes of the reflected field and the field between layers are
connected by the following operator equations [18], [23]

a=rq+teB,, “4)
C, =tq+reB,, (5)
B, =ReC,, (6)
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B, = ﬁeCn , (7
C,=t,,q+r.eB,, n=2,3,...
where operator € determines the amplitudes variation of the field when the coordinate
system is shifted by the distance h along the direction of the field propagation

(ea)(&) = exp(ikhy(£)a($) -

Notice that along with (4) the Fourier amplitude of the reflected field may be
expressed as follows (2)

a=Rg. ®)

Then after substitution (5) into (6), and (8) into (4), and using (3) we may obtain the
following operator equation relatively the unknown reflection operator R:

Rq =10 +eB, —reB,, &)

B, = Req — Rerq + liereBl . (10)

Since the scattered field may by represented as a sum of the fields with discrete and

continuous spectra, then the operator R may contain singularities. After substitution (10)

into (9) one can see that the kernel function of the operator R may have singularities in
the points coinciding with the zeros of the function

f(£,¢) =1—exp(ikh(y(5) + () -
These points correspond to the cut-off frequencies of spatial harmonics of the

infinite periodical grating and they are the poles. Then the operator R is the singular
integral operator. For every fixed £ denote the zeros of the function f(&,¢) as

27 ?
4.(5)=sgn(|)\/1—(%||—\/l—§2J A ==N(©),..N(©&).

and for every fixed ¢ denote the zeros of the function f(&,¢) as

270 ?
5.(4’)=sgn(|)\/l—(%||—\/l—§2J A ==N().aN(©).

For the elimination of singularities the regularization procedure is needed. The
regularization procedure consists in the following. Such function is added to the integrand
which has singularities, so that their sum does not have singularities and the integral
could be calculated with the use of the quadrature formulae, and the integral for the term
which we add could be calculated analytically. To remain the identity, the same term is
subtracted.

Let us introduce operator R as follows

R =R —s eRes" 8))

with the kernel function
R(£.$)=R(&.T(E.0).
In (11) we subtract singularities from the operator R , so the operator R does not

have singularities. Let us write the action of the operator R on an arbitrary function
g(&) with the use of the regularizing operator F, [23]
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(RA)(&) = (RF,Q)(&). (12)
By analogy with using the operator regularizing operator F, we can write
(R)(17,$) = (1F,R)(7.£). (13)
In the expanded form the expressions (12) and (13) may be written as follows
N(&)
. [1¢-¢ @)
_ m=-N(¢) dg
(RF,0)(&) =PV [R(&.O)a() ™ - +
4 &0 ]
[T¢-¢n )
m=-N(¢J)
~ N
+7i Y R(E$, (), (£)aS,(S)),
n=-N(¢)
N($)
[TE-4©)
_ m=-N(¢) dg
(rF,R)(7.£) = PV j (7. &R(E.£) " -
f(£.0) ]
[1€ -,
m=—N(¢$)
N(£)
+ai Y 1, (EIRE (€),)B (),
n=-N(&)
where o, (&) = K gn(f) (f (?éf) ‘N :—xfn({) ff (g”éé;) . During deriving these
expressions the following relation is used
PV =0.
_wC §

Then (8) and (9) may be rewritten in the form
R =1+ e(I - RFere) ™ (RFereF,Re — RFer) —

—re(I — RFere) ' (RFereF,Re — RFer) — reF,Re,
where [ is the unit operator. Eq. (14) is a nonlinear operator equation relatively the

unknown operator R connected with the unknown reflection operator by (11). One may
solve (14) with the use of the iterative procedure with the relaxation parameter [27]

R, =7'(#-DR,+PR )

(14)

where R = (R )NXN is the vector obtained after discretization of the integral operator R
from its matrix by simple renumbering its elements, P is the right side of (14), N is
dimension, 7 is diagonal matrix with elements 7 of (N-N)x(N-N) dimension, 7 is

the real parameter, R j 1s the solution obtained on the j th iteration, j=0,1,2,.... Due to
the appropriate choice of the parameter 7 we managed to archive the vanishing of the error.

4. Numerical results
We suppose that plane wave with unit amplitude incidents on the grating. The angle
of incidence is ¢, = 90°. The scattered field by the semi-infinite grating may be
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represented as a superposition of the field of cylindrical waves appeared as a result of
scattering by the end of the grating and plane waves corresponding to an infinite
periodical part of the grating. Using the saddle-point method [28] when kr >>1 the
scattered field may be represented in the form [23]

Hi(p,)=H] (@, +H(p,n)+H(p,r). (15)

The first term in (15) H XF (@,r) is a set of plane waves (Floquet’s modes) and does
not decrease when Kkr — oo. The second term in (15) H;(¢,r) is a cylindrical wave
scattered by the end of the grating. Its magnitude decreases as 1/+/kr when kr — 0.

The third term in (15) H™ (g, r) takes into account integrand singularities and provides

the uniform asymptotic representation of the field when Kr — oo . It is expressed in terms
of Gauss error function. Here (I,¢) is the polar coordinate system.
We introduce function which describes the field without influence of the plane waves

D(p.r) =10logH$ (p.1) + HI™ (o1 (16)

Function D(g@, p) is the similar to the direction pattern for the finite grating.
erfc

However we should notice that due to the term H ™ (¢,r) sum ‘H S(@, 1)+ H™(p,1)

does not decrease when I increases.
Introduce reflection coefficient of the plane waves as follows

RC = 272R(W,{,) | .

Notice that the reflected plane wave does not exist in the total domain @ € (0, 7). It

is obvious that RC does not depend on the distance I .
Let us compare the characteristics of the scattered fields by the semi-infinite gratings

of single layers which consist of a single strip and pre-Cantor grating. Denote as K, the
set obtained on the n th step of the creation of the Cantor set in the interval (—d;d) [29]:

K, = (-d:d),
2d 2.2d

K, =[~did+24|u[-a+22%.q],

! ( +3ju[ B j
(—d;—d+ﬂju(—d+ﬂ;—d+ﬂju(—d+2'2d;—d+7'2d]

9 9 3 3 9
U(—d+w;d}
9

and so on. Denote CK_ =(—d;d)\K, the complement of the set K, in the interval
(—d;d). Let us call CK, the pre-Cantor set of the order n .

K,
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The results in Figs. 2, 3, and 4 are 20 ‘//
presented for the same values of the
distance  between layers kh=35
(h/Xx=0.8), but different single layer
grating geometry. Introduce parameter
L which is equal to the sum of the
length of all strips of a single layer
(along Yy - axis). The results presented
in Fig. 2 a), Fig. 3 (curve 1) and Fig. 4
(curve 1) are obtained for a single strip
with a width of half of the wavelength, 0 5 10 s 20
kd =kL/2=1.57 (d/A=0.25).The ky
reflection coefficient of the plane wave
equals toRC =0.1279 . In Figs. 2 b), 3
(curve 2) and 4 (curve 2) the results for
the pre-Cantor grating of the forth
order are presented, N=4, kd =1.57,
KL =2.52. The reflection coefficient
for the grating with a single layer based
on CK, equals toRC =0.02528. In

Fig. 2 ¢), Fig.3 (curve 3) and Fig. 4
(curve 3) the results are calculated for a
single strip with a width that equals to 0 : " 7 S
a sum of strips width of the pre-Cantor ky -
grating, kd =1.26, kL =2.52. The ref-
lection coefficient in this case equals
RC =0.09628. The choice of such
structure parameters allows comparing
semi-infinite knife-type grating with
layers consisting of the pre-Cantor u,
grating and a single strip. Notice that
the reflection coefficient for the grating
based on the pre-Cantor set almost 4
times smaller than the reflection
coefficient of the single-element

-0.090
-0.066
-0.043
-0.019
0.005¢
0.029
0.10

d
N[[=

7/

A

-0.55
-0.30

= ////-/ 20 . -U;(JSU

L ZA

0.45
0.70
1.2

=EN

grating with the same parameter 0 s P 10 15 20
kL =2.52.
Fig. 2 presents the reflected near- ©
field distribution (real part of the Fig. 2. Real part of the reflected field component
magnetic field component H ). Two Re(Hy) .

type of waves propagate away from the grating. One of them is a cylindrical wave
appeared as a result of scattering by the end of the grating. The field maximum of such

wave situated at ¢ = 90°. Another one is a plane wave that corresponds to an infinite

periodical part of the grating. The structure parameters are chosen so that only one
reflected plane wave can propagate in the domain y >0, z>0.
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It is seen from the figure that the plane wave exists only in the domain W < ¢ where

W=~ 165° is the propagation angle of the reflected plane wave which corresponds to the
periodical part of the grating.

IH.| pp—
X
2.04
1.54t
1.09 220
0.5 R -
30 N
[~ ~ - - \
~ e
0 90 120 150 0,0
Fig. 3. Module of the reflected field component Fig. 4. Dependence of D(¢, r) vs. .
H;|, z2=0.1.

It is suitable [22] to calculate the scattered field at the distance z =0.14 from the
structure (Fig. 3). The field maximum is located near Yy =0 above the middle of a single

strip. For a single strip with the decrease of its width 2d the field maximum decreases.
The field maximum for the pre-Cantor grating is significantly smaller than for a single
strip. In the domain above the grating the oscillations are present which appear as a result
of influence of the evanescent plane waves on the near field.

Fig. 4 shows the dependencies of the D(g.1) vs. polar angle ? when Kr =30 One
may observe the first maximum near angle @ =g, =90° in the dependencies. The

second maximum near angle ¢ =W = 165° is connected with the excitation of the plane
wave of the periodic part of the grating. The value of this maximum, mainly, is defined
be the term H ™ (¢, 1) in (16).

It is obvious that since the grating is symmetric relatively the z -axis, all presented
dependencies are also symmetric relatively the z -axis.

From Fig. 2, Fig. 3, and Fig. 4 one can see that the amplitude of the field reflected
by the pre-Cantor grating is sufficiently smaller than the amplitude of the reflected field
by the single-element grating. Thus the pre-Cantor grating is practically transparent for
the incident wave.

The conducted numerical study shows that the increase of the order of the pre-
Cantor set N >4 leads to negligible changes in characteristics of scattered fields, and in
the same time it significantly complicates the manufacturing of such gratings.

5. Conclusions

In this paper the semi-infinite multi-element knife-type grating is studied
numerically for the first time. As a single layer the finite plane grating based on fractal or
the pre-Cantor set is chosen. The problem is reduced to the nonlinear operator equation.
After its regularization which is connected with the poles exclusion, it is replaced by the
matrix one. For solving it the iterative procedure with the relaxation parameter is
proposed.
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The scattered far and near fields are studied. It is established that the geometry of a
strips displacement in a single layer has a greater influence on the field amplitude than
their width. So the reflected field amplitude by the pre-Cantor grating is sufficiently small
compared to the reflected field amplitude by the single-element one. The choice of the
pre-Cantor grating of the 4th order (n =4) is optimal and the increase of the order n
does not introduce significant changes in the characteristics of the scattered fields.

Thus multi-layer periodical gratings based on pre-Cantor set are perspective for
designing of radiolucent and radiotransparent covers, antennas systems and other
functional microwave devices.
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