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AMPLIFICATION OF Z' SIGNAL IN e¢“e™ — u"u~ PROCESS

One-parameter observables with the best value-to-uncertainty ratio are proposed to
estimate possible signals of the Abelian Z' boson in the e*e”™ — u*u~ scattering process. The

value-to-uncertainty ratio is chosen as a natural criterion allowing the statistical
amplification of the signal in experiment. The model independent relations between the
Abelian Z' couplings to leptons are used in order to reduce the number of unknown
parameters of the particle. The observables are constructed by angular integration with
proper weight functions. In order to perform numeric optimization a set of orthogonal
polynomials is introduced taking into account the kinematics of the process. The optimal
weight functions are found to be smooth step-like functions close to the hyperbolic tangent
shape. The observables are applied to data on differential cross-sections obtained in the
LEP experiments. The Z' couplings to axial-vector and vector lepton currents are fitted
and compared to other estimates.

Keywords: high energy physics, Z' bosons, differential cross-section, integrated cross-
section.

OaHonmapaMeTpuueckue HalJaw0JaeMble € HAWJIYYIIHMM OTHOIIEHHMEM BeJUYHMHBI K
HeoNnpeaeIeHHOCTH NMpPeAJIOKeHbI AJISl OlleHKU BO3MOKHBIX CHTHAJIOB abejieBoro Z' 603oHa B

npounecce paccesnus e'e” — u*u” . OTHOMEHHe BeJHYHHBI K HEONpeaeJeHHOCTH BbIGPAHO B

KayecTBe eCTeCTBEHHOI0 KpHTepHs, MO3BOJAIOINEr0 CTATHCTHYECKH YCHJIMTh CHTHAJ B
3kcnepuMeHTe. Il yMeHbIIeHHs KOJIMYeCTBA HeHU3BECTHBIX MapaMeTPOB HOBOro 0030Ha
NPHUMEHAIOTCHA MOJEJbHO-HE3aBHCHMBbIC COOTHOLIEHHS MekKAY KOHCTAHTAMH CBS3H
abeqeBoro Z' c¢ Juenronamu. HaGniopaemble mOCTpPOEHBI YIIO0BBIM HMHTErpHPOBAHHMEM C
noaxoasimei BecoBoii (pyHkuueil. UncaeHHass ONTHMH3alMs BBINOJHSACTCH NPU NMOMOIIH
CHCTEMbl OPTOrOHAJBHBIX NOJHUHOMOB, BBEJACHHBIX € Y4YeTOM KHHEMaTHKH Ipoluecca.
OnTtumajbHble BecOBble GYHKIHH BBITJISAAAT CrIaKEHHBIMH CTYNEeHYATHIMH, NOXO0KHMHU HA
runepbonudyecknii Tanrenc. Hadaogaemble npuMeHeHbl K AU} depeHINAIBHBIM CeYCHHSIM
u3 3kcnepuMeHToB LEP. ®duTHpoBaHbl 3HAaYeHHS] KOHCTAHT CBfI3H Z' ¢ BEKTOPHBIMH H
aKCHAJbHO-BEKTOPHBIMH TOKAMHM JIENTOHOB U CONMOCTABJIEHBI C APYTMMH OlleHKAMHU.

KuaroueBble caoBa: ¢pu3uKa BBEICOKMX JdHepruil, Z' 6030HbBI, Au(depeHnanbHble CeYCHUS
paccesiHUs, HHTEerpajbHble CEUYCHUs PaCCesIHU.

OnHonmapaMeTpH4YHi cHocTepekyBaHi 3 HalKpamuM BigAHOIMIEHHSIM BeJHMYHHHU [0
HeBHM3HA4YEeHOCTI 3alpPONOHOBAaHI MJA ONIHKHM MOKJIMBHX CUTHaJIiB alejeBoro Z' 06030Ha B

npoueci poscisuns e'e” — "y~ . BinHoWIeHHS BeAMYMHH 10 HeBM3HAYEHOCTIi 00paHo B

SIKOCTI NMPHUPOAHOr0 KpuUTepilo, SAKUHA [JA03BOJASIE CTATHCTHYHO NOCHJIUTH CHITHAJI B
ekcnepuMeHnTi. Jlas 3MeHIIeHHs KiJIbKOCTI HeBiloMHX mnapamerpiB HOBOro ©6030Ha
32CTOCOBYIOTHCSI MOJAEJNbHO-He3aJIe’KHI  CHIBBIIHOMEHHSI MiX KOHCTAHTAMHM 3B’fI3KY
adeqeBoro Z' 3 gentoHamu. CnocrepexxyBaHi no0yaoBaHi KYTOBMM IHTerpyBaHHSIM 3
A0UiJBbHOI BaroBoi GyHkuico. YncelbHa onTuMizamiss BHKOHYETbCS 3a JOMOMOIOI0
CHCTEeMH OPTOTrOHAJLHUX MNOJIiHOMIB, BBeleHHX 3 YypaxXyBaHHSAM KiHeMaTHKH mponecy.
OntumanbHi BaroBi ¢QyHkuHii BHrJIAAA0THL 3rJaJ’KeHMMH CTYNeHeBHMH, CXOKHMH Ha
rinepooniuynuii Tanrenc. CmocrtepexxyBaHni 3acTocoBaHi A0 AudepeHuiiinux mnepepizip 3
excnepuMenTiB LEP. ®irtoBaHi 3HaYeHHS KOHCTAaHT 3B’A3KY Z' 3 BEeKTOPHHMMH Ta
aKciaJbHO-BEKTOPHUMH CTPYMAaMHU JIENTOHIB i NOpPiBHAHI 3 iHIIMMH oniHKaMu.

Kurouogi ciaoBa: dizuka Bucokux eHepriit, Z' 6030ubI, qudepeHuiiini nepepizu po3cisiHHA,
IHTerpaibHi Hepepi3u pPO3CisHHS.
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Introduction

Electron-positron colliders provide possibility of precise measurements in high-
energy physics. The history of LEP experiments showed that lepton processes can be
sensitive to off-shell signals of physics beyond the standard model (SM). Unfortunately,
the LEP statistics was not rich enough to detect clearly some signals of new heavy particles.

The special observables were designed to select probable signals of the Abelian Z' boson
in various LEP processes [1, 2]. In particular, a one-parameter sign-definite observable

was constructed as a generalized forward-backward cross-section of e"e” — 1" i~ process,

and a hint of Z' boson was found at one standard deviation. However, the latest LHC
experiments allow to conclude that the maximum likelihood values of Z' couplings from
Ref. [1] seem to be overestimated. At the present time, the most powerful observables for

Z' boson in e"e” —> u'u” are found [3]. So, it is possible to revise the LEP data by

means of the new approach.

Let us describe briefly main checkpoints of the present investigation. We use
common phenomenological parameterization of Z' couplings with SM fermions as well as
the model-independent relations between the Z' couplings [4]. The optimal one-parameter
observables are constructed as the cross-sections integrated over the scattering angle with
proper weight functions maximizing the value-to-uncertainty ratio for the observable.
Then, we fit LEP data using the observables in order to estimate Z' coupling.

The low-energy phenomenology of the Abelian Z' boson

The Abelian Z' boson [5-7] is usually described by its couplings to vector and axial-vector
currents. In general, there is also the mixing between Z and Z' bosons. The corresponding
Lagrangian is

L, = %Zﬂ?}/”[(vff +y’ay, eos Oy + (v, +7a,)sin 6,11,
1., = .
L?fz' :EZ” S, +;/5a/,)cosé’0 —(vfgl +;/5af§4)sm 6,1f (1)

where we omit effective interactions inspired by loop corrections and next-to-leading
order terms in inverse heavy mass scales.

Not all the coupling constants in (1) are independent, if we assume the Abelian Z' boson
associated with an effective U(1) gauge symmetry at low energies. If we consider the
single neutral vector boson with a mass of order TeVs, the following relations arise [4]

Vitnea = Vi) = 7245 Ay = g = 4

. 2
0, = —aS20) [ m, j o

Jara,, \my

where T is the third component of the weak isospin, and the fermions are taken from the

same SM doublet. The relations can be motivated by general theoretical reasons (gauge
symmetry, renormalizability at energies of the Z' decoupling) which are described in
details in Ref. [4]. Let us note that the relations (3) cover a wide set of popular Z' models.
In this regard, they can be called model-independent. Considering the cross-sections at
energies below the Z' mass, it is convenient to use couplings

_ mZ _ mZ
a;=——""—a,;, Vy=—F7——V,. 3)
/ Narxm / / Nadrm /
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The virtual Z' boson state contributes to the differential cross-section of e“e™ — u™ u~

process. In the lowest order in the inverse Z' mass the cross-section deviates from its SM
value as

SM _ J—
do_do " _ R,y + Fy(s, 2yave +
dz dz
+F'3(\/§,Z)E\_)y +F4(\/§,z)\_ze\_z# +... 4)

where z =cos§, is the cosine of the scattering angle and dots stand for higher

corrections in the inverse Z' mass. Factors F; arise from the interference between the SM

scattering amplitude and the Z' exchange amplitude. They have to be computed
numerically taking into account both the tree-level contribution and loop corrections.
Being measured in experiments, the cross-section (4) allows to estimate the Z'

couplings a, Ve, and v, . A non-zero value of some coupling mentioned can be called

the Z' signal.

Minimal number of unknown parameters is preferable in fitting data. Therefore,
one-parameter observable is the most prominent from the statistical point of view.
Moreover, sign-definite observable is more informative, since it can also reject the
hypothesis, whereas sign-indefinite one can only accept the signal. These properties are
especially important in case of statistics which is not rich enough to detect clear signals at
high confidence levels. Fortunately, the cross-section (4) contains one sign-definite term

—2
with a . If we could select this term in the cross-section, we would obtain a powerful
observable to detect Z' signals in experiments. In case of lepton universality the term with
Ve v, also becomes sign-definite.

It is also worth to note that factors F,; are small with respect to £, ,. Their

contributions to the cross-section are about 1%, and their existence does not affect the key
ideas of the present investigation. So, the Z' signal in e"e¢” — u" 1~ can be discussed as
two-parametric.

The observables

_2 —_— p—
The differential cross-section (4) contains two leading terms at @ and v. v, . The

corresponding factors F; (\/E ,z) are the functions of energy and scattering angle. We can

use angular integration in order to suppress one factor comparing to another. Actually,
this means that we will construct some integrated cross-section with specific properties.

In general, integrated cross-sections are well known in the literature. The most
popular integration schemes are based on bin summation with equal weights but opposite
signs. As examples, we can mention the total cross-section, the forward-backward cross-
section, the center-edge cross-section, etc. However, the equal weight of bins is just a
possible option. The most general integration scheme can be described by weight
function p(z):

SM
do do ] 5)

o= jl dzp(z)(g -
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In these notations, the popular mentioned cross-sections correspond to step-like
weight functions. The observables used in previous analysis of LEP data are also based
on step-like weight functions.

The statistical uncertainty of the observable (5) can be estimated taking into account
that the actual number of events in bin is distributed under the Poisson distribution. This
means the variance of events coincides with the average number of events. Then, the
standard deviation of the observable is [3]

11 dO_SM
oo = |—|dzp? 6
o JLl 2p*(5) = (6)

where L is the integrated luminosity of the experiment.

Let us consider the observable which amplifies the Z' signal as much as possible.
This aim can be reached by maximizing the value-to-uncertainty (signal-to-uncertainty)
ratio where the weight function is assumed to be varied in the optimization procedure.
The general algorithm to find the optimal weight function is described in details in [3]. In
the present paper we mention briefly just the main steps of the algorithm.

1 do do™
[p(2) =7 - 2
o % dz dz
abs 3o oc abs 1 — max (7)
o
[ %%a:
dz

-1

In fact, the optimization (7) has to be performed under additional constraints. First
of all, the normalization of the weight function must be taken into account, since (7) is
evidently invariant under the rescaling of the weight function. We choose the
normalization

1
Idzpz(z) =1. (8)

Second, the weight function is chosen to suppress all the factors in the differential
cross-section (4) except for either /| or F,. The most general scheme takes into account

both the contributions of leading factors F;, and small factors F, ; in the differential

cross-section (4). In order to select the factor F| we can minimize the cumulative relative

contribution of the factors F, 5, :

24: abs(j. dzp(z)F, (\/;, Z)J

— min 9)

24: abs(j. dzp(z)F, (\/;, Z)j

The factor F) is selected in a similar way using F, , ; in the nominator. Eq. (9) does

not specify a unique weight function, it defines a subspace in the Hilbert space of p(z). It
is clearly seen from the fact that Eq. (9) does not change when a function orthogonal to
F, ;4 is added to p(2).
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The optimization (7) with the constraints (8) and (9) has to determine uniquely the
weight function p(z) for the most amplified Z' signal in the considered process. These
calculations require choosing some basis in the Hilbert space of weight functions.

The most natural basis takes into account the kinematics of e'e” — u" 1~ process.

Due to the absence of the flavor-changing neutral currents, there are no virtual bosons in
the t-channel. Moreover, all the leptons can be considered as massless. This leads to the
well-known two-polynomial structure of all the factors in the differential cross-sections:

F(Vs.2)=a,(Js)p/(2) +b,(Vs)p,(2) (10)
where p,(z)~z, p,(z)~(1+2z%). In this regard, it is convenient to use orthogonal
polynomials as a basis in the Hilbert space of weight functions. We define orthogonal

normalized polynomials in the standard way,

e
jdzn(z)p,(z) {0’ I iy

The full set of polynomials can be reconstructed starting from p, and p, and
increasing the largest power of the polynomial [3

e
\/7(1—— , Py =5\/;(523—3z). .(12)

Weight function p(z) can be expanded by p; :

p(z)= icipi (2). (13)

Then, the normalization condition (8) becomes

0

del=1. (14)

i=1

Since the Z' contributions to the cross-section are described by two polynomials p, ,, we
use the fixed direction in the functional subspace based on p, , in order to suppress

either [ or F, factor:

k=c,/c,. (15)
This can be done by means of (9). The numerical analysis shows that the corresponding
relative weight of F| or F, is 0.98. Thus, we can estimate the systematic error of the

variable as 2 %.
There is also the normalization condition (14) allowing to determine one of the
coefficients through the others. For instance,

l—c2—c?—...
o w

Thus, two coefficientsc, and ¢, are explicitly expressed by the other coefficients.

Asaresult, ¢;, ¢, ,... are to be varied to find the maximum (7).
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In fact, the usage of orthogonal polynomials is just calculation tool to perform
optimization (7) to find the most effective weight function. However, a convenient
'natural' basis helps us to obtain results in the most quick and simple way.

The signal-to-uncertainty ratio is maximized to find the coefficients at polynomial
expansion (13). Increasing the number of polynomials in (13) we can observe asymptotic
behavior of p(z). We can estimate the relative accuracy of the result comparing the weight
functions at the current and previous steps of the calculation:

1
77 = J.dz(pcurrent - pprevious )2 . (1 7)
-1

Using eight polynomials from the basis, we find 77<0.01 at all the considered energies,

which is below the systematic theoretical error (2%) of the observables. The results of
optimization are shown in Tables 1, 2.
Table 1
-2
The results of optimization of the weight function to select a for LEP energies. The parameter
k =c, /¢y is computed in accordance with (9), the coefficients ¢; in (13) are found by (7)

x/; , GeV k <) c) c3 cy Cs Cg cy cg
130 -0.567 0.770 | -0.437 -0.416 | 0.193 -0.011 -0.050 | -0.044 | 0.019
136 -0.524 | 0.802 -0.420 -0.392 | 0.141 0.025 -0.061 -0.040 | 0.014
161 -0.425 0.863 -0.367 -0.330 | 0.036 0.076 -0.056 | -0.017 0.000
172 -0.402 0.876 -0.352 -0.314 0.014 0.083 -0.052 -0.011 -0.003
183 -0.385 0.885 -0.340 -0.302 -0.002 0.086 -0.048 -0.007 -0.004
189 -0.377 0.889 | -0.335 -0.296 | -0.009 0.088 -0.046 | -0.006 -0.005
192 -0.374 | 0.891 -0.333 -0.294 | -0.012 0.088 -0.045 -0.005 -0.005
196 -0.369 0.893 -0.330 -0.291 -0.016 | 0.089 -0.044 | -0.004 | -0.005
200 -0.365 0.894 -0.327 -0.288 -0.019 0.089 -0.043 -0.003 -0.006
202 -0.363 0.895 -0.325 -0.287 | -0.020 | 0.089 -0.042 -0.003 -0.006
205 -0.361 0.897 -0.323 -0.285 -0.023 0.090 -0.041 -0.002 -0.006
207 -0.359 0.897 | -0.322 -0.284 | -0.024 | 0.090 -0.041 -0.002 -0.006

Table 2

The results of optimization of the weight function to select ;e v « for LEP energies. The parameter

k =c, /¢ is computed in accordance with (9), the coefficients c; in (13) are found by (7)

\/g , GeV k q Cy c3 Cy4 s C cy cg
130 -1.258 -0.597 0.751 0.230 -0.150 0.009 0.039 0.034 -0.015
136 -1.362 | -0.579 | 0.788 | 0.174 -0.102 | -0.018 | 0.044 | 0.029 | -0.010
161 -1.678 | -0.510 | 0.856 | 0.052 -0.021 -0.045 0.033 0.010 | 0.000
172 -1.775 -0.490 0.870 0.025 -0.008 -0.046 0.029 0.006 0.002
183 -1.856 | -0.474 | 0.879 | 0.006 0.001 -0.046 | 0.025 0.004 | 0.002
189 -1.894 | -0.466 | 0.883 -0.003 0.005 -0.046 | 0.024 | 0.003 0.003
192 -1.912 | -0.463 0.885 -0.006 | 0.006 -0.046 | 0.023 0.002 | 0.003
196 -1.934 | -0.459 | 0.887 | -0.011 0.008 -0.046 | 0.022 | 0.002 | 0.003
200 -1.955 -0.455 0.889 -0.015 0.010 -0.045 0.022 0.002 0.003
202 -1.965 -0.453 0.890 | -0.017 | 0.010 -0.045 | 0.021 0.001 0.003
205 -1.980 | -0.450 | 0.891 -0.020 | 0.011 -0.045 | 0.021 0.001 0.003
207 -1.989 | -0.449 | 0.892 | -0.022 | 0.012 -0.045 | 0.020 | 0.001 0.003

In Figs. 1, 2 we show how the optimal weight functions depend on the collision
energy. As it is seen, the result is stable for different LEP energies.

10
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Fig. 1. The optimal weight functions to select @ for different LEP energies.

S 130GeV

. e e e e e e o oo 136GV

S ——— 161 GeV
N
X - 172GeV
\
N
sl \ e 183 GeV
N
-\ - . - - 189 GeV
— =~ N
Ff=rtugy
Py
10}
05
p(Vs 2)

-10 -0.5 00 05 10

Fig. 2. The optimal weight functions to select V. v, for different LEP energies.

Data fit

Data fit is performed in the standard way using chi-square function to combine
different scattering energies together. First, we calculate both the mean values and the
statistical uncertainties of our observables at different energies taking data on differential
cross-sections published by the LEP Collaborations [8-10]. Dividing the values by a
known numeric factor, we compute the experimental estimate of either a2 or Ve vy . In
this way we obtain 21 data points for each type of observables. After that, we combine all

11
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the data points altogether by means of the standard chi-square technique obtaining the
mean values and the uncertainties of the Z~ couplings:

a =(1.4369£4.8614)x10™°, v.v, =(~7.5890 £ 6.0377)x 10~
Conclusions

Let us discuss the obtained results. First of all, the uncertainty of a2 is close to the
uncertainty within the indirect measurement of the axial-vector coupling by the total
cross-sections and forward-backward asymmetries [1]. However, we use less data points,
since the differential cross-sections were not published for some LEP energies depending
on the collaboration. This reflects the fact that the new observables are more statistically
powerful with respect to the observables used in [1].

—2
Second, the mean value of a decreases comparing to the indirect estimates [1].
This is in accordance with the latest constraints from the LHC [11] showing that this

coupling should be about 10~ rather than 10~ .
Finally, the mean value and the uncertainty of the vector coupling are quite large, so
we cannot interpret them as some signal of the particle.

The new observables for searching for Z’ signals in e’e” — u* 1~ process show

they can be useful in data fitting. They have good perspectives in future experiments at
lepton colliders such as the ILC.
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