УЛК 549.753.1:546.175

З. А. Матысина, Н. П. Боцьва, Е. В. Елина

Днепропетровский национальный университет им. Олеся Гончара

ГИДРОКСИЛАПАТИТ СА₅(РО₄)₃ОН: ГИСТЕРЕЗИСНЫЙ ЭФФЕКТ, УПРУГИЕ КОНСТАНТЫ

Розроблена статистична теорія фазового переходу типу впорядкованість – невпорядкованість для гідроксилапатиту Са₅(PO₄)₃OH. Досліджений сегнетоеластичний фазовий перехід типу параеластик-фероеластик при температурі T₀ = 484,5 K, який полягає у впорядкованому зміщенні гідроксильних груп ОН. Розраховані вільна енергія Гельмгольца і термодинамічний потенціал Гіббса, знайдена їх них груп ОН. Розраховані вільна енергія І ельмгольца і термодинамічний потенціал І іобса, знайдена іх залежність від температури і тиску, параметра порядку та енергетичних констант міжатомних і міжмо-лекулярних взаємодій у кристалі. Отримано рівняння термодинамічно рівноважного стану, яке визна-чає залежність степені впорядкованості системи від температури. Оцінена температура сегнетоеластич-ного фазового переходу. У розрахунках застосовано метод середніх енергій без урахування кореляції в заповненні позицій у кристалі атомами та молекулярними групами, а також модель жорстких молеку-лярних одиниць. Урахована взаємодія лише найближчих структурних одиниць та квадратична залеж-ність енергії впорядкування від парметра порядку та концентрації гідроксилу. У процесі дослідження термодинамічного потенціалу з урахуванням доданка деформації кристала під дією зовнішньої орієнтованої механічної напруги оцінено вплив механічної напруги на порямуть добутично та облава можливість провук у та оцінено вплив механічної напруги на поряметри порядкування доряда можливість пораву гістерезисного сефекту. Для пружньої

кристала пд дасю зовнишьюї оріснгованої механчної напруги оцінено влілив механчної напруги на параметр порядку та обгрунтована можливість прояву гістерезисного ефекту. Для пружньої податливості та модуля пружності показано, що при малих значеннях параметра порядку викону-ється правило «від'ємної двійки» та закон Кюрі-Вейсса. У широкому інтервалі температур залеж-ність модуля пружності від температур для невпорядкованого стану системи є нелінійною. Вияв-лені закономірності функціональних залежностей якісно відповідають експериментальним даним. Ключові слова: фазовий перехід, температура впорядкування, гістерезисний ефект, пружні константи

Разработана статистическая теория фазового перехода типа порядок-беспорядок для гид-роксилапатита Са₅(PO₄)₃OH. Исследован сегнетоэластический фазовый переход типа параэлас-тик-ферроэластик при температуре $T_0 = 484,5$ К, проявляющийся в упорядоченном смещении гидроксильных групп OH. Рассчитана свободная энергия Гельмгольца и термодинамический потенциал Гиббса, найдена их зависимость от температуры и давления, параметра порядка и энергетических констант межатомных и межмолекулярных взаимодействий в кристалле. Полуэнергетических констант межатомных и межмолекулярных взаимодеиствии в кристалле. полу-чено уравнение термодинамически равновесного состояния, определяющее температурную зави-симость степени упорядоченности системы. Оценена температура сегнетоэластического фазового перехода. В расчете использован метод средних энергий в пренебрежении корреляцией в заполне-нии позиций в кристалле атомами и молекулярными группами, а также модель жестких молеку-лярных единиц. Учтено взаимодействие только для ближайших структурных единиц и квадра-тичная зависимость энергии упорядочения от параметра порядка и концентрации гидроксила. Ник использовании тородичения от параметра о рядемого на документации структивности и тородения и концентрации сидроксила.

Пичная зависимость энергии упорядочения от параметра порядка и концентрации гидроксила. При исследовании термодинамического потенциала с учетом слагаемого по деформации крис-талла под действием внешнего ориентированного механического напряжения оценено влияние ме-ханического напряжения на параметр порядка и обоснована возможность проявления гистерезисно-го эффекта. Для упругой податливости и модуля продольной упругости показано, что при малых значениях величины параметра порядка выполняется правило «отрицательной двойки» и закон Кюри-Вейсса. В широком интервале температур зависимость модуля упругости от температуры для упорядоченного состояния системы нелинейная. Выявленные закономерности функциональных зависимостей качественно соответствуют экспериментальным данным.

Ключевые слова: фазовый переход, температура упорядочения, гистерезисный эффект, упругие константы.

Statistical theory of phase transition of order-disorder in hydroxyapatite $Ca_5(PO_4)_3OH$ has been developed. Ferroelastic phase transition paraelastik-ferroelastics at $T_0 = 484,5$ K, which is in an orderly shift of the hydroxyl groups OH, has been investigated. Both Helmholtz free energy and ther-modynamic potential of Gibbs have been calculated, their dependence on temperature and pressure, and the arrest because the ar modynamic potential of Gibbs have been calculated, their dependence on temperature and pressure, order parameter and energy constants of interatomic and intermolecular interactions in the crystal has been found. An equation of thermodynamic equilibrium condition that determines the temperature dependence of the degree of ordering of the system has been obtained. Temperature of the ferroelastic phase transition has been estimated. The medium-energy calculation method used, neglecting the cor-relation in filling the positions of atoms in the crystal and molecular groups, as well as model rigid mo-lecular units. Interaction for only the nearest of the structural units and the quadratic dependence of the ordering energy of the order parameter and the concentration of hydroxyl are taken to account. In the study of the thermodynamic potential, taking into account the term of the crystal is de-formed by external oriented mechanical stress. the effect of mechanical stress on the order narameter has

In the study of the thermodynamic potential, taking into account the term of the crystal is de-formed by external oriented mechanical stress, the effect of mechanical stress on the order parameter has been estimated and the possibility of manifestation of the hysteresis effect has been proved. For the elas-tic compliance and the modulus of longitudinal elasticity is shown that for small values of the order pa-rameter is performed generally "negative two" and the Curie-Weiss law. In wide temperature intervals dependence of the elastic modulus with temperature for the ordered state of the system is nonlinear. The patterns of functional dependencies are qualitatively in accordance with the experimental data. Keywords: phase transition, ordering temperature, hysteresic effect, elastic constants.

[©] З. А. Матысина, Н. П. Боцьва, Е. В. Елина, 2011 20

Введение

Исследование апатитов и апатитоподобных материалов давно привлекает внимание ученых, но интерес к ним особенно возрос в последнее десятилетие [1 – 3]. Апатиты образуют группу минералов с общей формулой

$$\begin{split} Me_{10}(XO_4)_6 Y_2 &\equiv Me_5(XO_4)_3 Y, \\ Me &= Ca^{2+}, Co^{2+}, K^+, Na^+, Ba^{2+}, Mg^{2+}, Mn^{2+}, Ni^{2+}, Pb^{2+}, Sr^{2+}, Th^{2+} \text{ μ Ap.}, \\ XO_4 &= PO_4^{3-}, CO_4^{3-}, CoO_4^{3-}, CrO_4^{3-}, MnO_4^{3-}, SO_4^{3-}SiO_4^{3-}, VO_4^{3-} \text{ μ Ap.}, \\ Y &= F^-, Cl^-, OH^-, O^{2-}, CO_3^{2-} \text{ μ Ap.}. \end{split}$$

В настоящее время уже изучено и описано более 100 таких минералов. Апатиты легко поддаются процессам гидратации и дегидратации. Для них часто характерен дефицит по компоненту Ме, например, по кальцию [4]. Атомы водорода в результате внедрения в кристалл могут замещать как гидроксильные группы ОН, так и пустые места атомов кальция. Наличие внешнего электрического напряжения способствует перемещению атомов водорода по структурным каналам кристалла вдоль главной винтовой оси или вдоль тройной оси [5], поэтому апатиты являются перспективными кристаллами для получения оксидных материалов с протонной проводимостью.

В этой связи представляет интерес глубокое и всесторонне исследование апатитов, оценка их физических параметров, выявление возможности проявления гистерезисного эффекта, проявляющегося вследствие релаксационных процессов.

В настоящей работе изучается гидроксилапатит Ca₅(PO₄)₃OH, исследуется выявленный в нем сегнетоэластический фазовый переход типа параэластик-ферроэластик при температуре $T_0 = 484,5$ K [5; 6], проявляющийся в упорядоченном смещении гидроксильных групп OH, выясняется возможность проявления гистерезисного эффекта при фазовом переходе первого рода в кристаллах под направленным внешним механическим напряжением, дается оценка упругой податливости и модуля упругости.

Для решения перечисленных выше задач для гидроксилапатита Ca₅(PO₄)₃OH рассчитывались свободная энергия Гельмгольца и термодинамический потенциал Гиббса, находилась их зависимость от температуры и давления, параметра порядка и энергетических констант межатомных и межмолекулярных взаимодействий в кристалле, определялось уравнение термодинамически равновесного состояния, выясняющее температурную зависимость степени упорядоченности системы, оценивалась температура сегнетоэластического фазового перехода, изучался гистерезисный эффект, проявляющийся в зависимости параметра порядка от внешнего ориентированного механического напряжения, рассчитывалась температурная зависимость упругой податливости и модуля упругости.

В расчете принимались упрощающие предположения: использовался метод средних энергий в пренебрежении корреляцией в заполнении позиций в кристалле атомами и молекулярными группами, модель жестких молекулярных единиц или групп, учет взаимодействия только для ближайших структурных единиц, а также учет квадратичной зависимости энергии упорядочения от параметра порядка и концентрации гидроксила.

Уравнения термодинамического равновесия. Температура упорядочения

Расчет свободной энергии, приходящейся на один узел решетки гидроксилов, проводился по известной формуле [7 – 9]

$$F = U - kT \ln W \,,$$

где U – внутренняя конфигурационная энергия, равная сумме энергий взаимодействия ближайших гидроксильных комплексов, W – термодинамическая вероятность, определяемая числом энергетически различимых состояний кристалла, т. е. числом энергетически различимых распределений гидроксильных комплексов по их позициям, рассчитываемая правилами комбинаторики. T – абсолютная температура, k – постоянная Больцмана.

Была получена формула, определяющая свободную энергию гидроксилапатита в расчете на один из узлов кристаллической решетки в зависимости от температуры T, параметров порядка ξ_1 , ξ_2 и энергетических констант V, V', V''. Последние определяются через энергии взаимодействия ближайших гидроксильных комплексов.

$$f = \frac{F}{N} = -V - V'\xi_1\xi_2 - V''(\xi_1^2 - \xi_2^2) + \frac{1}{4}kT[(1+\xi_1)\ln\frac{1+\xi_1}{2} + (1-\xi_1)\ln\frac{1-\xi_1}{2} + (1-\xi_2)\ln\frac{1+\xi_2}{2} + (1-\xi_2)\ln\frac{1-\xi_2}{2}].$$

В состоянии равновесия свободная энергия минимальна. Из условия минимума свободной энергии

$$\frac{\partial f}{\partial \xi_1} = 0, \ \frac{\partial f}{\partial \xi_2} = 0$$

определяются параметры порядка ξ_1, ξ_2 . Эти соотношения имеют вид:

$$kT \ln \frac{1+\xi_1}{1-\xi_1} = 4(V'\xi_2 + V''\xi_1),$$

$$kT \ln \frac{1+\xi_2}{1-\xi_1} = 4(V'\xi_1 + V''\xi_2).$$

Легко убедиться, что при замене ξ_1 на $\pm \xi$ последние уравнения переходят одно в другое. Поэтому можно ограничиться одним уравнением, полагая $\xi = \xi_1 = -\xi_2$ (или $\xi = \xi_1 = \xi_2$). При этом получаем соотношение

$$\begin{split} &kT\ln\frac{1+\xi_2}{1-\xi_1} = 2\omega\xi,\\ &\omega = \begin{cases} 2(2V'-V'') & \text{при } \xi_1 = -\xi_2,\\ &2(2V'+V'') & \text{при } \xi_1 = \xi_2 \end{cases} \end{split}$$

где

есть энергия упорядочения гидроксилов в кристалле.

Полагая в последнем уравнении $\xi \rightarrow 0$, предварительно разложив логарифм в ряд по малым ξ , находим температуру упорядочения в виде

$$kT_0 = \omega_0$$

где ω_0 – постоянное слагаемое энергии ω . Зная экспериментальное значение температуры $T_0 = 483,5$ K, можно оценить энергию сегнетоэластического фазового перехода $\omega_0 = 0,04$ эВ.

Энергия упорядочения зависит от расстояния между структурными единицами, а следовательно, от параметра порядка, с появлением которого в большинстве случаев параметры кристаллической решетки незначительно уменьшаются. В простейшем случае зависимость $\omega = \omega(\xi)$ квадратичная [8; 9]

$$\omega = \omega_0 + \alpha \xi^2.$$

С учетом этого факта свободная энергия в расчете на один узел решетки при $\xi = \xi_1 = -\xi_2$ запишется в виде

$$f = -V - (\omega_0 + \alpha \xi^2) \xi^2 + \frac{1}{2} kT[(1+\xi) \ln \frac{1+\xi}{2} + (1-\xi) \ln \frac{1-\xi}{2}].$$
(1)

Из условия минимума свободной энергии $\partial f / \partial \xi = 0$ находим уравнение термодинамического равновесия системы

$$kT\ln\frac{1+\xi}{1-\xi} = 2(\omega_0 + 2\alpha\xi^2)\xi.$$
 (2)

Вблизи температуры фазового перехода, когда $\xi \rightarrow 0$ и $\ln \frac{1+\xi}{1-\xi} \approx 2\xi$, прибли-

женная формула, определяющая температурную зависимость параметра порядка, имеет вид

$$\xi^{2} = \frac{T/T_{0} - 1}{2\alpha/\omega_{0}}.$$
(3)

Как видим, зависимость ξ^2 от температуры оказалась линейной. Для большинства случаев различного типа фазовых переходов второго рода формула (3) согласуется с экспериментальными данными и результатами теоретических расчетов других авторов [7–9].

Гистерезисный эффект

В конденсатах с фазовым переходом первого рода может проявляться гистерезисный эффект, если на образец действует внешнее направленное механическое напряжение. Фазовый переход первого рода может реализовываться при коэффициенте $\alpha > 0$ в (2).

Выявить возможность проявления гистерезисного эффекта можно, исследуя термодинамический потенциал Гиббса. Изучение гистерезисного єффекта для ферроэластиков структур H4 и G5₁ проводилось нами в работах [10; 11].

Термодинамический потенциал в расчете на один гидроксил при $\xi = \xi_1 = -\xi_2$, с учетом квадратичной зависимости энергии упорядочения от параметра порядка при действии внешнего ориентированного механического напряжения σ , коллинеарного смещениям гидроксильных групп OH, с учетом пропорциональности сдвига групп OH за счет σ параметр порядка, запишется в виде (в безразмерных единицах, т. е по отношению к ω_0) (см.(1))

$$\psi = \frac{f}{\omega_0} - \sigma\xi = -\upsilon - (1 + \delta\xi^2)\xi^2 + \frac{1}{2}\theta[(1 + \xi)\ln\frac{1 + \xi}{2} + (1 - \xi)\ln\frac{1 - \xi}{2}] - \sigma\xi, \quad (4)$$

где обозначено $\upsilon = V / \omega_0$, $\delta = \alpha / \omega_0$, $\theta = T / T_0$.

Предполагается, что деформация за счет смещений гидроксилов ОН под действием внешнего напряжения пропорциональна параметру порядка, коэффициент пропорциональности внесен в символ внешнего напряжения о.

Дифференцируя соотношение (4) по параметру порядка и приравнивая его нулю, получаем уравнение, определяющее равновесное значение параметра порядка в зависимости от температуры, коєффициента б и внешнего напряжения о

$$\theta \ln \frac{1+\xi}{1-\xi} = 2\xi(1+2\delta\xi^2)\xi + \sigma.$$
⁽⁵⁾

На рисунках приведены графики температурной зависимости параметра порядка, построенные по формуле (5) для случаев $\delta \neq 0$, $\sigma = 0$ (рис.1) и $\delta = 0$, $\sigma \neq 0$ (рис.2).

Рис.1. Расчетные графики температурной зависимости параметра порядка, построенные по формуле (5) для $\delta = 0$ (пунктирная кривая) и $\delta = \pm 0.5$ (соответственно кривые 1 и 2) в отсутствие внешнего ориентированного механического напряжения. Кружочком отмечена экстремальная точка на кривой 1

Из рис.1 видно, что при $\delta = 0$ и $\delta < 0$ параметр порядка с повышением температуры непрерывно уменьшается, достигая нуля при $T = T_n = T_0$, т. е в этом случае имеем фазовый переход второго рода. При $\delta \neq 0$ это уменьшение более значительно. Если же $\delta > 0$, то зависимость ξ от температуры может быть экстремальной. В этом случае параметр порядка сначала незначительно уменьшается до температуры T_0 и далее скачком падет до нуля. При этом $T_n < T_0 < T_3$, где T_n – температура потери устойчивого состояния, T_0 – температура фазового перехода, T_3 – температура, соответствующая экстремальной точке. Будем иметь фазовый переход первого рода. 24

Следовательно, энергетический параметр δ , как уже отмечалось выше, может изменить род фазового перехода. Температура упорядочения T_0 в этом случае определяется условием $\psi(\xi) = \psi(0)$.

Рис.2. Расчетные графики температурной зависимости параметра порядка, определяющие влияние внешнего ориентированного механического напряжения на величину параметра порядка, построенные по формуле (5) для $\delta = 0$ и $\sigma = 0$ (пунктирная кривая), а также для $\delta = 0$ и $\sigma = \pm 0.3$ (соответственно кривые 1 и 2). Кривая 1' построена для $\delta = 0$ и $\sigma = 0.1$. Кружочками отмечены экстремальные точки на кривых 1 и 1'

Из рис.2 видно влияние внешнего механического напряжения на параметр порядка. Положительные значения величины σ приводят к изменению рода фазового перехода от второго к первому, параметр порядка при температуре, меньшей T_3 , скачком будет падать до нуля. При $\sigma < 0$ параметр порядка непрерывно уменьшается с ростом температуры, асимптотически приближясь к оси температур при $T \rightarrow \infty$. В этом случае внешнее напряжение способствует сохранению параметра порядка при достаточно высоких температурах.

Гистерезисный эффект может проявиться в немонотонной зависимости параметра порядка ξ от внешнего механического напряжения σ . Эта зависимость определяется уравнением (5).

На рис.3 показаны кривые $\xi = \xi(\sigma)$, построенные по формуле (5) для разных значений температуры θ . Стрелками на рисунке отмечен ход изменения ξ с увеличением или уменьшением напряжения σ . В этих участках кривых проявляется скачкообразное уменьшение или увеличение параметра порядка. Как видно из этого рисунка, возможно проявление и одной, и двух гистерезисных петель. В этих случаях фазовый переход порядок – беспорядок будет переходом первого рода.

Рис.3. Гистерезисный эффект в зависимости параметра порядка от внешнего ориентированного механического напряжения. Кривые 1, 2, 3, 4 построены для температур T/T_0 , равных 0,5; 1,4; 2; 2,6 при $\delta = 1$. Заштрихованы области гистерезисной зависимости $\xi = \xi(\sigma)$. Пунктирные участки кривых соответствуют нестабильному состоянию

Упругая податливость. Модуль продольной упругости

Упругая податливость характеризуется изменением параметра порядка ξ , соответствующим единичному изменению напряжения σ и определяется производной $S = \partial \xi / \partial \sigma$, а модуль продольной упругости есть величина обратная $E = \partial \sigma / \partial \xi$, характеризующая изменение напряжения с изменением параметра порядка.

Вблизи температуры фазового перехода, когда ξ мало, и $\ln \frac{1+\xi}{1-\xi} \approx 2\xi$ форму-

ла (5) перепишется в виде

$$\sigma = 2\left(\frac{T - T_0}{T_0} - 2\delta\xi^2\right)\xi.$$
(6)

Из (6) с учетом (3) получаем модуль упругости

$$E = 2[(T - T_0)/T_0 - 6\delta\xi^2] = \begin{cases} 2x & \text{при } \xi = 0, \quad \text{где } x = (T - T_0)/T_0 \\ \\ -4x & \text{при } \xi^2 = (T - T_0)/2\delta T_0. \end{cases}$$
(7)

Как следует из последнего соотношения, в этом случае выполняется правило «отрицательной двойки»

$$E_{\xi \neq 0} / E_{\xi = 0} = -2$$

и закон Кюри-Вейса (пропорциональность модуля упругости температуре).

Более точную формулу для модуля упругости получаем, дифференцируя (5) по ξ

$$E = 2(\theta \frac{1}{1 - \xi^2} - 6\delta\xi^2 - 1).$$
(8)

Если в этой формуле пренебречь в знаменателе величиной ξ^2 (при малых ξ) в сравнении с единицей, то получим результат формулы (7).

При любых величинах ξ для модуля упругости получим выражение, подставляя в (8) величину ξ^2 из (3),

$$E = \begin{cases} 2x & \text{при } x > 0 \ (\xi = 0), \\ -4x[1 + \frac{1+x}{2(x-2\delta)}] & \text{при } x < 0 \ (\xi \neq 0). \end{cases}$$

Рис.4. Расчетные графики температурной зависимости упругой податливости S (сплошные кривые) и модуля упругости E (пунктирные кривые). Кривые для x > 0 ($T > T_0$) соответствуют неупорядоченному состоянию ($\xi = 0$) и для x < 0 ($T < T_0$) – упорядоченному

На рис.4 представлены графики температурной зависимости упругой податливости *S* и модуля упругости *E*, построенные по последней формуле для $\delta=0,2$. Кривые для x > 0 ($T > T_0$) соответствуют неупорядоченному состоянию, для x < 0($T < T_0$) – упорядоченному. Зависимость E(x) в упорядоченном состоянии для малых x отличается от линейной, однако начиная от x = -0,3, и далее, она близка к линейной. Зависимость S(x) для больших по абсолютному значению величин x такова, что кривая стремится к нулю, а при $\pm x \rightarrow 0$ она стремится к бесконечности.

Заключение

Исследование термодинамического потенциала, включающего слагаемое по деформации кристалла за счет внешнего ориентированного механического напряжения, позволило из уравнения термодинамического равновесия во-первых, оценить влияние механического напряжения на параметр порядка, и во-вторых, обосновать возможность проявления гистерезисного эффекта, отмечающегося как экс-

периментальный фактор во многих литературных источниках. При этом для разных температур возможно проявление и одной, и двух гистерезисных петель.

Расчет упругой податливости и модуля продольной упругости из уравнения термодинамического равновесия показал, что при малых значениях величины параметра порядка выполняется правило «отрицательной двойки» и закон Кюри-Вейсса. В широком интервале температур зависимость модуля упругости от температуры для упорядоченного состояния системы оказалась нелинейной.

Библиографические ссылки

1. Шпак А.П. Апатиты / А.П. Шпак, В.Л. Карбовский, В.В. Трачевский – К., 2002. – 414 с.

2. **Dorozhkin S. V.** Calcium orthophosphates / S. V. Dorozhkin// J. Mater. Sci. – 2007. – Vol. 42. – P. 1061 – 1095.

3. **Ma G.** Hydroxyapatite: hexagonal or monoclinic? / G.Ma, X.Y.Liu // Cryst. Growth Des. – 2009. – Vol. 9, № 7. – P. 2991 – 2994.

4. **Wang T.** Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder / T. Wang, A. Dorner-Reisel, E. Müller // J. Eur. Ceram. Soc. – 2004. – Vol. 24. – P. 693 – 698.

5. Дудник Е.Ф. Кристаллохимические особенности внедрения водорода в оксидные кристаллы со структурой типа апатита / Е.Ф. Дудник, В.М. Дуда, Л. Я. Дяченко // Вісник Дніпропетр. ун-ту. Фізика. Радіоелектроніка. – 1998. – Т. 1, № 3. – С. 141 – 149.

6. **Dudnik E. F.** Protonic conductivity and ferroelasticity in materials with apatite-like structure / V.M.Duda // Ferroelectrics. – 1999. – Vol. 233, № 1 –2. – P. 121 – 127.

7. Смирнов А. А. Молекулярно-кинетическая теория металлов / А. А. Смирнов. – М.: Наука. – 1966. – 488 с.

8. **Матысина З. А.** Молекулярно-кинетическая теория упорядочивающихся твердых растворов./ З. А. Матысина – Д., 1978. – 119 с.

9. **Матысина З. А.** Порядки различного типа в кристаллах и фазовые превращения в углеродных материалах / ./ З. А. Матысина, С.Ю.Загинайченко, Д.В.Щур. – Д., 2005. – 524 с.

10. **Матисіна З. А**. Деформаційний гістерезіс та пружна податливість кристалів зі структурою H4 поблизу точки Кюрі /./ З. А. Матысина, В.А.Чумак // Укр. фіз. журн. – 2001. – Т. 46, № 9. – С. 957 – 959.

11. **Matysina Z. A.** Phase transformation in elastic crystals of the structure $G5_1$ / Z. A. Matysina, S.Yu. Zaginaichenko, A.M.Eremenko // Int. conf. "Sci. for Materials". Kiev. IPM Nat. Acad. Sci. – 2002. – P. 208–209.

Надійшла до редколегії 07.06.2011